Skip to main content

Defining Failure in Articular Cartilage Surgery

  • Chapter
  • First Online:
Joint Preservation of the Knee

Abstract

Articular cartilage injury remains a challenging condition for orthopedic surgeons to address. While multiple treatment options exist and have reported improvement in patient symptoms, sustained and successful treatment of symptomatic chondral defects remains elusive in many cases. Physicians may define failure in a multitude of ways such as subsequent surgery, progression to arthroplasty, lack of improvement in outcome measures, lack of hyaline-like repair tissue, or poor appearance on imaging studies. This chapter reviews the current standards for defining treatment failure in order to address the importance of consistent and clear goals for treating cartilage injuries and understanding the outcome tools currently available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG. Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy J Arthroscopic Relat Surg. 1997;13:456–60.

    Article  CAS  Google Scholar 

  2. Hjelle K, Solheim E, Strand T, Muri R, Brittberg M. Articular cartilage defects in 1,000 knee arthroscopies. Arthroscopy J Arthroscopic Relat Surg. 2002;18:730–4.

    Article  Google Scholar 

  3. Steadman JR, Briggs KK, Rodrigo JJ, Kocher MS, Gill TJ, Rodkey WG. Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy J Arthroscopic Relat Surg. 2003;19:477–84.

    Article  Google Scholar 

  4. Mithoefer K, McAdams T, Williams RJ, Kreuz PC, Mandelbaum BR. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis. Am J Sports Med. 2009;37:2053–63.

    Article  Google Scholar 

  5. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331:889–95.

    Article  CAS  Google Scholar 

  6. Kon E, Verdonk P, Condello V, et al. Matrix-assisted autologous chondrocyte transplantation for the repair of cartilage defects of the knee. Am J Sports Med. 2009;37:156S–66S.

    Article  Google Scholar 

  7. Gudas R, Kalesinskas RJ, Kimtys V, et al. A prospective randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint in young athletes. Arthroscopy J Arthroscopic Relat Surg. 2005;21:1066–75.

    Article  Google Scholar 

  8. Bugbee WD, Convery FR. Osteochondral allograft transplantation. Clin Sports Med. 1999;18:67–75.

    Article  CAS  Google Scholar 

  9. Jakobsen RB, Engebretsen L, Slauterbeck JR. An analysis of the quality of cartilage repair studies. J Bone Joint Surg Am. 2005;87:2232–9.

    PubMed  Google Scholar 

  10. Sterett WI, Steadman JR, Huang MJ, Matheny LM, Briggs KK. Chondral resurfacing and high tibial osteotomy in the varus knee: survivorship analysis. Am J Sports Med. 2010;38:1420–4.

    Article  Google Scholar 

  11. Bae DK, Song SJ, Yoon KH, Heo DB, Kim TJ. Survival analysis of microfracture in the osteoarthritic knee—minimum 10-year follow-up. Arthroscopy J Arthroscopic Relat Surg. 2013;29:244–50.

    Article  Google Scholar 

  12. Pestka JM, Bode G, Salzmann G, Südkamp NP, Niemeyer P. Clinical outcome of autologous chondrocyte implantation for failed microfracture treatment of full-thickness cartilage defects of the knee joint. Am J Sports Med. 2012;40:325–31.

    Article  Google Scholar 

  13. Hoemann C, Kandel R, Roberts S, et al. International Cartilage Repair Society (ICRS) recommended guidelines for histological endpoints for cartilage repair studies in animal models and clinical trials. Cartilage. 2011;2:153–72.

    Article  CAS  Google Scholar 

  14. Gilmore R, Palfrey A. A histological study of human femoral condylar articular cartilage. J Anat. 1987;155:77.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Rosenberg L. Chemical basis for the histological use of safranin O in the study of articular cartilage. J Bone Joint Surg Am. 1971;53:69–82.

    Article  CAS  Google Scholar 

  16. Henderson I, Tuy B, Connell D, Oakes B, Hettwer W. Prospective clinical study of autologous chondrocyte implantation and correlation with MRI at three and 12 months. Bone Joint J. 2003;85:1060–6.

    CAS  Google Scholar 

  17. Pineda S, Pollack A, Stevenson S, Goldberg V, Caplan A. A semiquantitative scale or histologic grading of articular cartilage repair. Cells Tissues Organs. 1992;143:335–40.

    Article  CAS  Google Scholar 

  18. O’Driscoll SW, Keeley FW, Salter RB. Durability of regenerated articular cartilage produced by free autogenous periosteal grafts in major full-thickness defects in joint surfaces under the influence of continuous passive motion. A follow-up report at one year. J Bone Joint Surg Am. 1988;70:595–606.

    Article  Google Scholar 

  19. Mainil-Varlet P, Aigner T, Brittberg M, et al. Histological assessment of cartilage repair. J Bone Joint Surg Am. 2003;85:45–57.

    Article  Google Scholar 

  20. Mainil-Varlet P, Van Damme B, Nesic D, Knutsen G, Kandel R, Roberts S. A new histology scoring system for the assessment of the quality of human cartilage repair: ICRS II. Am J Sports Med. 2010;38:880–90.

    Article  Google Scholar 

  21. Brittberg M, Peterson L. Introduction of an articular cartilage classification. ICRS Newsl. 1998;1:5–8.

    Google Scholar 

  22. Smith GD, Taylor J, Almqvist KF, et al. Arthroscopic assessment of cartilage repair: a validation study of 2 scoring systems. Arthroscopy J Arthroscopic Relat Surg. 2005;21:1462–7.

    Article  Google Scholar 

  23. Van Den Borne M, Raijmakers N, Vanlauwe J, et al. International Cartilage Repair Society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in Autologous Chondrocyte Implantation (ACI) and microfracture. Osteoarthr Cartil. 2007;15:1397–402.

    Article  Google Scholar 

  24. Knutsen G, Drogset JO, Engebretsen L, et al. A randomized trial comparing autologous chondrocyte implantation with microfracture. J Bone Joint Surg. 2007;89:2105–12.

    PubMed  Google Scholar 

  25. Saris DB, Vanlauwe J, Victor J, et al. Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture. Am J Sports Med. 2008;36:235–46.

    Article  Google Scholar 

  26. Vanlauwe J, Saris DB, Victor J, Almqvist KF, Bellemans J, Luyten FP. Five-year outcome of characterized chondrocyte implantation versus microfracture for symptomatic cartilage defects of the knee: early treatment matters. Am J Sports Med. 2011;39:2566–74.

    Article  Google Scholar 

  27. Gudas R, Gudaitė A, Pocius A, et al. Ten-year follow-up of a prospective, randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint of athletes. Am J Sports Med. 2012;40:2499–508.

    Article  Google Scholar 

  28. Irrgang JJ, Anderson AF, Boland AL, et al. Development and validation of the international knee documentation committee subjective knee form. Am J Sports Med. 2001;29:600–13.

    Article  CAS  Google Scholar 

  29. Lysholm J, Gillquist J. Evaluation of knee ligament surgery results with special emphasis on use of a scoring scale. Am J Sports Med. 1982;10:150–4.

    Article  CAS  Google Scholar 

  30. Kocher MS, Steadman JR, Briggs KK, Sterett WI, Hawkins RJ. Reliability, validity, and responsiveness of the Lysholm knee scale for various chondral disorders of the knee. JBJS. 2004;86:1139–45.

    Article  Google Scholar 

  31. Knutsen G, Drogset JO, Engebretsen L, et al. A randomized multicenter trial comparing autologous chondrocyte implantation with microfracture: long-term follow-up at 14 to 15 years. J Bone Joint Surg Am. 2016;98:1332–9.

    Article  Google Scholar 

  32. McConnell S, Kolopack P, Davis AM. The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC): a review of its utility and measurement properties. Arthritis Care Res. 2001;45:453–61.

    Article  CAS  Google Scholar 

  33. Greco NJ, Anderson AF, Mann BJ, et al. Responsiveness of the International Knee Documentation Committee subjective knee form in comparison to the Western Ontario and McMaster Universities Osteoarthritis Index, modified Cincinnati Knee Rating System, and Short Form 36 in patients with focal articular cartilage defects. Am J Sports Med. 2010;38:891–902.

    Article  Google Scholar 

  34. Ebert JR, Smith A, Wood DJ, Ackland TR. A comparison of the responsiveness of 4 commonly used patient-reported outcome instruments at 5 years after matrix-induced autologous chondrocyte implantation. Am J Sports Med. 2013;41:2791–9.

    Article  Google Scholar 

  35. Hambly K, Griva K. IKDC or KOOS? which measures symptoms and disabilities most important to postoperative articular cartilage repair patients? Am J Sports Med. 2008;36:1695–704.

    Article  Google Scholar 

  36. Marlovits S, Striessnig G, Resinger CT, et al. Definition of pertinent parameters for the evaluation of articular cartilage repair tissue with high-resolution magnetic resonance imaging. Eur J Radiol. 2004;52:310–9.

    Article  Google Scholar 

  37. Dhollander A, Huysse W, Verdonk P, et al. MRI evaluation of a new scaffold-based allogenic chondrocyte implantation for cartilage repair. Eur J Radiol. 2010;75:72–81.

    Article  CAS  Google Scholar 

  38. Marlovits S, Singer P, Zeller P, Mandl I, Haller J, Trattnig S. Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol. 2006;57:16–23.

    Article  Google Scholar 

  39. Robertson W, Fick D, Wood D, Linklater J, Zheng M, Ackland T. MRI and clinical evaluation of collagen-covered autologous chondrocyte implantation (CACI) at two years. Knee. 2007;14:117–27.

    Article  CAS  Google Scholar 

  40. de Windt TS, Welsch GH, Brittberg M, et al. Is magnetic resonance imaging reliable in predicting clinical outcome after articular cartilage repair of the knee? A systematic review and meta-analysis. Am J Sports Med. 2013;41:1695–702.

    Article  Google Scholar 

  41. Mithoefer K, Williams RJ, Warren RF, et al. The microfracture technique for the treatment of articular cartilage lesions in the knee. J Bone Joint Surg Am. 2005;87:1911–20.

    Article  Google Scholar 

  42. Kreuz PC, Steinwachs MR, Erggelet C, et al. Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthr Cartil. 2006;14:1119–25.

    Article  CAS  Google Scholar 

  43. Tadenuma T, Uchio Y, Kumahashi N, et al. Delayed gadolinium-enhanced MRI of cartilage and T2 mapping for evaluation of reparative cartilage-like tissue after autologous chondrocyte implantation associated with Atelocollagen-based scaffold in the knee. Skelet Radiol. 2016;45:1357–63.

    Article  Google Scholar 

  44. Brown DS, Durkan MG, Foss EW, Szumowski J, Crawford DC. Temporal in vivo assessment of fresh osteochondral allograft transplants to the distal aspect of the femur by dGEMRIC (delayed gadolinium-enhanced MRI of cartilage) and zonal T2 mapping MRI. J Bone Joint Surg Am. 2014;96:564–72.

    Article  Google Scholar 

  45. Li X, Cheng J, Lin K, et al. Quantitative MRI using T1rho and T2 in human osteoarthritic cartilage specimens: correlation with biochemical measurements and histology. Magn Reson Imaging. 2011;29:324–34.

    Article  CAS  Google Scholar 

  46. Theologis AA, Schairer WW, Carballido-Gamio J, Majumdar S, Li X, Ma CB. Longitudinal analysis of T1p and T2 quantitative MRI of knee cartilage laminar organization following microfracture surgery. Knee. 2012;19:652–7.

    Article  Google Scholar 

  47. Domayer S, Kutscha-Lissberg F, Welsch G, et al. T2 mapping in the knee after microfracture at 3.0 T: correlation of global T2 values and clinical outcome–preliminary results. Osteoarthr Cartil. 2008;16:903–8.

    Article  CAS  Google Scholar 

  48. Jungmann PM, Brucker PU, Baum T, et al. Bilateral cartilage T2 mapping 9 years after mega-OATS implantation at the knee: a quantitative 3T MRI study. Osteoarthr Cartil. 2015;23:2119–28.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian J. Cole .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lansdown, D.A., Wang, K.C., Cole, B.J. (2019). Defining Failure in Articular Cartilage Surgery. In: Yanke, A., Cole, B. (eds) Joint Preservation of the Knee. Springer, Cham. https://doi.org/10.1007/978-3-030-01491-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01491-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01490-2

  • Online ISBN: 978-3-030-01491-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics