Skip to main content

Introduction: 2d-Based Quantum Technologies

  • Chapter
  • First Online:
  • 1153 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Framed within the growing giant of quantum technologies, with billions in expenditure world-wide and rapidly growing, we harness the exciting physics and technological promise of 2-dimensional materials to create atomically-thin quantum devices capable of emitting single photons and capturing single spins. In this thesis we present the alliance of 2d and quantum information technology - the first steps towards hybrid light-matter quantum networks set in a low power, scalable on-chip platform.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Palacios-Berraquero, C et al (2017) Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat commun 8. https://doi.org/10.1038/ncomms15093

    Article  ADS  Google Scholar 

  2. Palacios-Berraquero C et al (2016) Atomically thin quantum light-emitting diodes. Nat Commun 7:12978. Issn: 2041-1723

    Google Scholar 

  3. Geim AK, Grigorieva IV (2013) Van der Waals heterostructures. Nature 499:419–425. Issn: 1476-4687

    Google Scholar 

  4. Novoselov KS, Mishchenko A, Carvalho A, Castro Neto AH (2016) 2D materials and van der Waals heterostructures. Science (New York, N.Y.) 353:aac9439. Issn: 1095-9203

    Article  Google Scholar 

  5. Liu Y, Weiss NO, Duan X, Cheng H-C, Huang Y, Duan X (2016) Van der Waals heterostructures and devices. Nat Rev Mater 1:16042. Issn: 2058-8437

    Google Scholar 

  6. Mak KF, Shan J (2016) Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat Photonics 10:216–226. Issn: 1749-4885

    Google Scholar 

  7. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7:699–712. Issn: 1748-3395

    Google Scholar 

  8. Novoselov KS et al (2004) Electric field effect in atomically thin carbon films. Science (New York, N.Y.) 306(5696):666–9. Issn: 1095-9203

    Google Scholar 

  9. Novoselov KS et al (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102:10451–3. Issn: 0027-8424

    Google Scholar 

  10. Chhowalla M, Shin HS, Eda G, Li L-J, Loh KP, Zhang H (2019) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5:263–75. Issn: 1755-4349

    Google Scholar 

  11. Splendiani A et al (2010) Emerging photoluminescence in monolayer MoS2. Nano Lett 10:1271–1275. Issn: 15306984

    Article  ADS  Google Scholar 

  12. Zhou W et al (2013) Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett 13:2615–2622. Issn: 1530-6984

    Google Scholar 

  13. Wang G et al (2014) Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2. Phys Rev B 90. Issn: 1098-0121. https://doi.org/10.1103/PhysRevB.90.075413, arXiv: 1402.6009

  14. Bromley RA, Murray RB, Yoffe AD (1972) The band structures of some transition metal dichalcogenides. III. Group VIA: trigonal prism materials. J Phys C: Solid State Phys 5:759–778. Issn: 0022-3719

    Google Scholar 

  15. Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:2–5. Issn: 00319007

    Google Scholar 

  16. Ramasubramaniam A (2012) Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys Rev B 86:115409. Issn: 1098-0121

    Google Scholar 

  17. Wilson J, Yoffe A (1969) The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv Phys 18:193–335. Issn: 0001-8732

    Google Scholar 

  18. Ribeiro-Soares J et al (2014) Group theory analysis of phonons in two-dimensional transition metal dichalcogenides. Phys Rev B 90:115438. Issn: 1098–0121

    Google Scholar 

  19. Wang G et al (2017) Excitons in atomically thin transition metal dichalcogenides. arXiv: 1707.05863

  20. Liu G-B, Xiao D, Yao Y, De XX, Yao W, Xiao D (2014) Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chem Soc Rev. Issn: 0306-0012. https://doi.org/10.1039/C4CS00301B

    Article  Google Scholar 

  21. Echeverry JP, Urbaszek B, Amand T, Marie X, Gerber IC (2016) Splitting between bright and dark excitons in transition metal dichalcogenide monolayers. Phys Rev B 93:121107. Issn: 2469-9950

    Google Scholar 

  22. Liu G-B, Pang H, Yao Y, Yao W (2014) Intervalley coupling by quantum dot confinement potentials in monolayer transition metal dichalcogenides. New J Phys 105011. https://doi.org/10.1088/1367-2630/16/10/105011

    Article  ADS  Google Scholar 

  23. Xiao D, Liu G-B, Feng W, Xu X, Yao W (2012) Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys Rev Lett 108:196802. Issn: 00319007

    Google Scholar 

  24. Zhu ZY, Cheng YC, Schwingenschlögl U (2011) Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys Rev B 84:153402. Issn: 1098-0121

    Google Scholar 

  25. Xiao D, Liu G-B, Feng W, Xu X, Yao W (2012) Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys Rev Lett 108:1–5. Issn: 00319007

    Google Scholar 

  26. Zhang C, Johnson A, Hsu C-L, Li L-J, Shih C-K (2014) Direct imaging of band profile in single layer MoS2 on graphite: quasiparticle energy gap, metallic edge states, and edge band bending. Nano Lett 14:2443–2447. Issn: 1530-6984

    Google Scholar 

  27. Liu G-B, Shan W-Y, Yao Y, Yao W, Xiao D (2013) Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides. Phys Rev B 88:085433. Issn: 1098-0121

    Google Scholar 

  28. Kormányos A, Zólyomi V, Drummond ND, Burkard G (2014) Spin-orbit coupling, quantum dots, and qubits in monolayer transition metal dichalcogenides. Phys Rev X 4:1–16. Issn: 21603308

    Google Scholar 

  29. Kormányos A et al (2015) p theory for two-dimensional transition metal. 2D Mater 2:49501. Issn: 2053-1583

    Google Scholar 

  30. Ochoa H, Roldán R (2013) Spin-orbit-mediated spin relaxation in monolayer MoS2. Phys Rev B - Condens Matter Mater Phys 87:245421. Issn: 10980121

    Google Scholar 

  31. Cao T et al (2012) Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat Commun 3:887. Issn: 2041-1723

    Google Scholar 

  32. Mak KF, He K, Shan J, Heinz TF (2012) Control of valley polarization in monolayer MoS2 by optical helicity. Nat Nanotechnol 7:494–498. Issn: 1748-3387

    Google Scholar 

  33. Jones AM et al (2013) Optical generation of excitonic valley coherence in monolayer WSe2. Nat Nanotechnol 8:634–638. Issn: 1748-3395

    Google Scholar 

  34. Wang G et al (2016) Control of exciton valley coherence in transition metal dichalcogenide monolayers. Phys Rev Lett 117:187401. Issn: 0031-9007

    Google Scholar 

  35. Schmidt R et al (2016) Magnetic-field-induced rotation of polarized light emission from monolayer WS2. Phys Rev Lett 117:077402. Issn: 0031-9007

    Google Scholar 

  36. Cadiz F et al (2017) Excitonic linewidth approaching the homogeneous limit in MoS2-based van derWaals heterostructures. Phys Rev X 7:021026. Issn: 2160-3308

    Google Scholar 

  37. Aivazian G et al (2015) Magnetic control of valley pseudospin in monolayer WSe2. Nat Phys 11:148–152. Issn: 1745-2473

    Google Scholar 

  38. Li Y et al (2014) Valley splitting and polarization by the zeeman effect in monolayer MoSe2. Phys Rev Lett 113:1–5. Issn: 0031-9007

    Google Scholar 

  39. MacNeill D et al (2015) Valley degeneracy breaking by magnetic field in monolayer MoSe2. Phys. Rev. Lett. 037401:1–10

    Google Scholar 

  40. Srivastava A, Sidler M, Allain AV, Lembke DS, Kis A, Imamoglu A (2015) Valley zeeman effect in elementary optical excitations of a monolayer WSe2. Nat Phys 11:141–147. Issn: 1745-2473

    Google Scholar 

  41. Rostami H, Asgari R (2015) Valley zeeman effect and spin-valley polarized conductance in monolayer MoS2 in a perpendicular magnetic field. Phys Rev B 91:1–11. Issn: 1098-0121

    Google Scholar 

  42. Stier AV, McCreary KM, Jonker BT, Kono J, Crooker SA (2016) Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS2 and MoS2 to 65 tesla. Nat Commun 7:10643. Issn: 2041-1723

    Google Scholar 

  43. Mak KF, McGill KL, Park J, McEuen PL (2014) Valleytronics. The valley Hall effect in MoS2 transistors. Science (New York, N.Y.) 344:1489–92. Issn: 1095-9203

    Google Scholar 

  44. Qiu DY, da Jornada FH, Louie SG (2013) Optical spectrum of MoS2: many- body effects and diversity of exciton states Phys Rev Lett 111:216805. Issn: 0031-9007

    Google Scholar 

  45. Ugeda MM et al (2014) Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat Mater 13:1091–5. Issn: 1476-1122

    Google Scholar 

  46. Chernikov A et al (2014) Exciton binding energy and nonhydrogenic rydberg series in monolayer WS2. Phys Rev Lett 113:076802. Issn: 0031-9007

    Google Scholar 

  47. He K et al (2014) Tightly bound excitons in monolayer WSe 2. Phys Rev Lett 113:026803. Issn: 0031-9007

    Google Scholar 

  48. Cheiwchanchamnangij T, Lambrecht WRL (2012) Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Phys Rev B 85:205302. Issn: 1098-0121

    Google Scholar 

  49. Wang G et al (2015) Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances. Phys Rev Lett 114:097403. Issn: 0031-9007

    Google Scholar 

  50. Glazov MM, Amand T, Marie X, Lagarde D, Bouet L, Urbaszek B (2014) Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides. Phys Rev B 89:201302. Issn: 1550235X. https://doi.org/10.1103/PhysRevB., arXiv: 1403.0108

  51. Glazov MM et al (2015) Spin and valley dynamics of excitons in transition metal dichalcogenide monolayers. Phys Status Solidi (B) Basic Res 252:2349–2362. Issn: 15213951

    Google Scholar 

  52. Dyakonov MI (2008) Basics of semiconductor and spin physics. Springer, Berlin, pp 1–28. https://doi.org/10.1007/978-3-540-78820-1_1

    Google Scholar 

  53. Bayer M et al (2002) Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys Rev B 65:195315. issn: 0163-1829

    Google Scholar 

  54. Ye Z et al (2014) Probing excitonic dark states in single-layer tungsten disulfide. Nature 513:214–218. Issn: 0028-0836

    Google Scholar 

  55. Wu F, Qu F, MacDonald AH (2015) Exciton band structure of monolayer MoS2. Phys Rev B 91:075310. Issn: 1098-0121

    Google Scholar 

  56. Zhu B, Chen X, Cui X (2015) Exciton binding energy of monolayer WS2. en. Sci Rep 5:9218. Issn: 2045-2322

    Google Scholar 

  57. Ross JS et al (2013) Electrical control of neutral and charged excitons in a monolayer semiconductor. en. Nat commun 4:1474. Issn: 2041-1723

    Google Scholar 

  58. Mak KF et al (2013) Tightly bound trions in monolayer MoS2. Nat Mater 12:207–11. Issn: 1476-1122

    Google Scholar 

  59. Ye Y et al (2015) Monolayer excitonic laser. Nat Photonics 9:733–737. Issn: 1749-4885

    Google Scholar 

  60. Srivastava A, Imamoglu A (2015) Signatures of bloch-band geometry on excitons: non-hydrogenic spectra in transition metal dichalcogenides. Arxiv, 5

    Google Scholar 

  61. Raja A et al (2017) Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nat Commun 8. https://doi.org/10.1038/ncomms15251

    Article  ADS  Google Scholar 

  62. Koster GF, Dimmock JO, Wheeler G, Satz RG (1963) Properties of thirty-two point groups. M.I.T. Press, USA

    Google Scholar 

  63. Robert C et al (2017) Fine structure and lifetime of dark excitons in transition metal dichalcogenide monolayers. arXiv: 1708.05398

  64. Wang G et al (2017) In-plane propagation of light in transition metal dichalcogenide monolayers: optical selection rules. Phys Rev Lett 119:047401. Issn: 10797114

    Google Scholar 

  65. Zhang X-X et al (2017) Magnetic brightening and control of dark excitons in monolayer WSe2. Nat Nanotechnol. Issn: 1748-3387. https://doi.org/10.1038/nnano.2017.105, arXiv: 1612.03558

    Article  ADS  Google Scholar 

  66. Lindlau J et al (2017) Identifying optical signatures of momentum-dark excitons in transition metal dichalcogenide monolayers. arXiv: 1710.00988

  67. Lindlau J et al (2017) The role of momentum-dark excitons in the elementary optical response of bilayer WSe2. arXiv: 1710.00989

  68. Kosmider K, González JW, Fernández-Rossier J (2013) Large spin splitting in the conduction band of transition metal dichalcogenide monolayers. Phys Rev B 88:245436. Issn: 1098-0121

    Google Scholar 

  69. Qiu DY, Cao T, Louie SG (2015) Nonanalyticity, valley quantum phases, and lightlike exciton dispersion in monolayer transition metal dichalcogenides: theory and first-principles calculations. Phys Rev Lett 115:176801. Issn: 10797114

    Google Scholar 

  70. Zhang XX, You Y, Zhao SYF, Heinz TF (2015) Experimental evidence for dark excitons in monolayer WSe2. Phys Rev Lett 115:257403. Issn: 10797114

    Google Scholar 

  71. Wang G et al (2015) Spin-orbit engineering in transition metal dichalcogenide alloy monolayers. Nat Commun 6. Issn: 2041-1723. https://doi.org/10.1038/ncomms10110, arXiv: 1506.08114

  72. Zhou Y et al (2017) Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons. Nat Nanotechnol 12:856–860. Issn: 1748-3387

    Google Scholar 

  73. Molas MR et al (2017) Brightening of dark excitons in monolayers of semiconducting transition metal dichalcogenides. 2D Mater 4:021003. Issn: 2053-1583

    Google Scholar 

  74. Duerloo K-AN, Ong MT, Reed EJ (2012) Intrinsic Piezoelectricity in 2D materials. J Phys Chem Lett 3:2871–2876

    Google Scholar 

  75. Desai SB et al (2014) Strain-induced indirect to direct bandgap transition in multilayer WSe2. Nano Lett 14:4592–7. Issn: 1530-6992

    Google Scholar 

  76. Amin B et al (2014) Strain engineering of WS2, WSe2, and WTe2. RSC Adv 4:34561. Issn: 2046-2069

    Google Scholar 

  77. Bertolazzi S, Brivio J, Kis A (2011) Stretching and breaking of ultrathin MoS2, 9703–9709

    Article  Google Scholar 

  78. Feng J, Qian X, Huang C, Li J (2012) Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat Photonics 6:866–872. Issn: 1749-4885

    Google Scholar 

  79. He K, Poole C, Mak KF, Shan J (2013) Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett 13:2931–2936. Issn: 15306984

    Google Scholar 

  80. Zhu CR et al (2013) Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2. Phys Rev B - Condens Matter Mater Phys 88:1–5. Issn: 10980121

    Google Scholar 

  81. Castellanos-Gomez A et al (2013) Local strain engineering in atomically thin MoS2. Nano Lett 13:5361-5366. Issn: 1530-6984

    Google Scholar 

  82. Scalise E, Houssa M, Pourtois G, Afanas’ev V, Stesmans A (2012) Straininduced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Res 5:43–48. Issn: 19980124

    Article  Google Scholar 

  83. Yun WS, Han S, Hong SC, Kim IG, Lee J (2012) Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX\_2 semiconductors (M = Mo, W; X = S, Se, Te). Phys Rev B 85:1–5. Issn: 1098-0121

    Google Scholar 

  84. Shi H, Pan H, Zhang YW, Yakobson BI (2013) Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2. Phys Rev B- Condens Matter Mater Phys 87:1–8. Issn: 10980121

    Google Scholar 

  85. Castellanos-Gomez A et al (2013) Local strain engineering in atomically thin MoS2. Nano Lett 13:5361–5366. Issn: 15306984

    Google Scholar 

  86. Li H et al (2015) Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide. Nat Commun 6:7381. Issn: 2041-1723

    Google Scholar 

  87. Rostami H, Guinea F, Polini M, Roldán R (2017) Piezoelectricity and valley Chern number in inhomogeneous hexagonal 2D crystals. arXiv: 1707.03769

  88. Shepard GD, Ajayi OA, Li X, Zhu X-Y, Hone J, Strauf S (2017) Nanobubble induced formation of quantum emitters in monolayer semiconductors. 2D Mater 4. https://doi.org/10.1088/2053-1583/0/0/000000

  89. Wu W et al (2014) Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514:470–474. Issn: 0028-0836

    Google Scholar 

  90. Zhu H et al (2014) Observation of piezoelectricity in free-standing monolayer MoS2. Nat Nanotechnol 309. https://doi.org/10.1038/nnano.2014.309

    Article  ADS  Google Scholar 

  91. Geim AK, Novoselov KS (2007) The rise of graphene. Nature materials 6:183–91. Issn: 1476-1122

    Google Scholar 

  92. Castro Neto AH, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Modern Phys 81:109–162. Issn: 0034-6861

    Google Scholar 

  93. Xu M, Liang T, Shi M, Chen H (2013) Graphene-like two-dimensional materials. Chem Rev 113:3766–98. Issn: 1520-6890

    Google Scholar 

  94. Novoselov KS, Fal’ko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490:192–200. Issn: 1476-4687

    Google Scholar 

  95. Ferrari AC (2014) Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. en. Nanoscale 7:4598–4810. Issn: 2040-3364

    Google Scholar 

  96. Xia F, Perebeinos V, Lin Y-M, Wu Y, Avouris P (2011) The origins and limits of metal-graphene junction resistance. Nat Nanotechnol 6:179–84. Issn: 1748-3395

    Google Scholar 

  97. Dean CR et al (2010) Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol 5:722–6. Issn: 1748-3395

    Google Scholar 

  98. Ajayi OA et al (2017) Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers. 2D Mater 4:031011. Issn: 2053-1583

    Google Scholar 

  99. Haigh SJ et al (2012) Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat Mater 11:764–7. Issn: 1476-1122

    Google Scholar 

  100. Kretinin AV et al (2014) Electronic properties of graphene encapsulated with different two-dimensional atomic crystals. Nano Lett 14:3270–6. Issn: 1530-6992

    Google Scholar 

  101. Georgiou T et al (2013) Vertical field-effect transistor based on grapheme-WS2 heterostructures for flexible and transparent electronics. en. Nature Nanotechnol 8:100–3. Issn: 1748-3395

    Google Scholar 

  102. Kang K et al (2015) High-mobility three-atom-thick semiconducting films with waferscale homogeneity. Nature 520:656–660. Issn: 0028-0836

    Google Scholar 

  103. Jariwala D, Marks TJ, Hersam MC (2016) Mixed-dimensional van der Waals heterostructures. Nat Mater 16:170–181. Issn: 1476-1122

    Google Scholar 

  104. Kimble HJ (2008) The quantum internet. Nature 453:1023–1030. Issn: 0028-0836

    Google Scholar 

  105. DiVincenzo DP (2000) The physical implementation of quantum computation. Fortschritte der Physik 48:771–783. Issn: 00158208

    Google Scholar 

  106. Lounis B, Orrit M (2005) Single-photon sources. Inst Phys 68(68):1362

    Article  ADS  Google Scholar 

  107. Northup TE, Blatt R (2014) Quantum information transfer using photons. Nat Photonics 8:356–363. Issn: 1749-4885

    Google Scholar 

  108. O’Brien JL, Furusawa A, Vuckovic J (2009) Photonic quantum technologies. Nat Photonics 3:687–695. Issn: 1749-4885

    Google Scholar 

  109. Aharonovich I, Englund D, Toth M (2016) Solid-state single-photon emitters. Nat Photonics 10:631–641. Issn: 1749-4885

    Google Scholar 

  110. Kimble HJ, Dagenais M, Mandel L (1977) Photon antibunching in resonance fluorescence. Phys Rev Lett 39:691–695. Issn: 0031-9007

    Google Scholar 

  111. M Fox (2006) Quantum optics : an introduction. OUP, Oxford

    Google Scholar 

  112. Tonndorf P et al (2015) Single-photon emission from localized excitons in an atomically thin semiconductor. Optica 2:347

    Article  Google Scholar 

  113. Srivastava A, Sidler M, Allain AV, Lembke DS, Kis A, Imamoglu A (2015) Optically active quantum dots in monolayer WSe2. Nat Nanotechnol 10:491–496. Issn: 1748-3387

    Google Scholar 

  114. Koperski M et al (2015) Single photon emitters in exfoliated WSe2 structures. Nat Nanotechnol 10:503–506. Issn: 1748-3387

    Google Scholar 

  115. Chakraborty C, Kinnischtzke L, Goodfellow KM, Beams R, Vamivakas AN (2015) Voltage-controlled quantum light from an atomically thin semiconductor. Nature Nanotechnol 10:507–511. Issn: 1748-3387

    Google Scholar 

  116. He Y-M et al (2015) Single quantum emitters in monolayer semiconductors. Nat Nanotechnol 10:497–502. Issn: 1748-3387

    Google Scholar 

  117. Stanley MJ et al (2014) Dynamics of a mesoscopic nuclear spin ensemble interacting with an optically driven electron spin. Phys Rev B 90:1–13. Issn: 1098-0121

    Google Scholar 

  118. Stockill R et al (2016) Quantum dot spin coherence governed by a strained nuclear environment. Nature Commun 7:12745. Issn: 2041-1723

    Google Scholar 

  119. Tonndorf P et al (2017) On-chip waveguide coupling of a layered semiconductor single-photon source. Nano Lett 17:5446–5451. Issn: 1530-6984

    Google Scholar 

  120. Tran TT et al (2017) Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays. Nano Lett 17:2634–2639. Issn: 1530-6984

    Google Scholar 

  121. Tripathi LN et al (2017) Spontaneous emission enhancement in strain-induced WSe2 monolayer based quantum light sources on metallic surfaces. arXiv: 1709.00631

  122. Cai T et al (2017) Coupling emission from single localized defects in two-dimensional semiconductor to surface plasmon polaritons. Nano Lett 17:6564–6568. Issn: 1530-6984

    Google Scholar 

  123. Abdi M, Hwang M-J, Aghtar M, Plenio MB (2017) Spin-mechanics with color centers in hexagonal boron nitride membranes. arXiv: 1704.00638

  124. Chen H-T, Taylor AJ, Yu N (2016) A review of metasurfaces: physics and applications. Rep Prog Phys 79:076401. Issn: 0034-4885

    Google Scholar 

  125. Aharonovich I, Toth M (2017) Quantum emitters in two dimensions. Science (New York, N.Y.) 358:170–171. Issn: 1095-9203

    Google Scholar 

  126. Branny A, Kumar S, Proux R, Gerardot BD (2017) Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Nat Commun 8:15053. Issn: 2041-1723

    Google Scholar 

  127. Chakraborty C, Goodfellow KM, Nick Vamivakas,A (2016) Localized emission from defects in MoSe2 layers. Optic Mater Express 6:2081. Issn: 2159-3930

    Google Scholar 

  128. Branny A et al (2016) Discrete quantum dot like emitters in monolayer MoSe2: spatial mapping, magneto-optics, and charge tuning. Appl Phys Lett 108:142101. Issn: 0003-6951

    Google Scholar 

  129. Tran TT, Bray K, Ford MJ, Toth M, Aharonovich I (2015) Quantum emission from hexagonal boron nitride monolayers. Nat Nanotechnol 11:37–41. Issn: 1748-3395

    Google Scholar 

  130. Jungwirth NR, Calderon B, Ji Y, Spencer MG, Flatté ME, Fuchs GD (2016) Temperature dependence of wavelength selectable zero-phonon emission from single defects in hexagonal boron nitride. Nano Lett acs.nanolett.6b01987. Issn: 1530-6984

    Google Scholar 

  131. Tran TT et al (2016) Robust multicolor single photon emission from point defects in hexagonal boron nitride. ACS Nano 10:7331–7338. Issn: 1936-0851

    Article  Google Scholar 

  132. Tran TT et al (2016) Quantum emission from defects in single-crystalline hexagonal boron nitride. Phys Rev Appl 5:34005. Issn: 23317019

    Google Scholar 

  133. Tran TT et al (2017) Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays. Nano Lett 17:2634–2639. Issn: 15306992

    Google Scholar 

  134. Grosso G et al (2017) Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride. Nat Commun 8:705. Issn: 2041-1723

    Google Scholar 

  135. Koperski M et al (2017) Optical properties of atomically thin transition metal dichalcogenides: observations and puzzles. Nanophotonics. Issn: 2192-8614. https://doi.org/10.1515/nanoph-2016-0165, arXiv: 1612.05879

  136. Chakraborty C, Kinnischtzke L, Goodfellow KM, Beams R, Vamivakas AN (2015) Voltage-controlled quantum light from an atomically thin semiconductor. Nat Nanotechnol 10:507–511. Issn: 1748-3395

    Google Scholar 

  137. Iff O et al (2017) Substrate engineering for high-quality emission of free and localized excitons from atomic monolayers in hybrid architectures. Optica 4:669. Issn: 2334-2536

    Google Scholar 

  138. Gammon D, Snow ES, Shanabrook BV, Katzer DS, Park D (1996) Fine structure splitting in the optical spectra of single GaAs quantum dots. Phys Rev Lett 76:3005–3008. Issn: 0031-9007

    Google Scholar 

  139. He Y-M et al (2016) Cascaded emission of single photons from the biexciton in monolayered WSe2. Nat Commun 7:13409. Issn: 2041-1723

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Palacios-Berraquero .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Palacios-Berraquero, C. (2018). Introduction: 2d-Based Quantum Technologies. In: Quantum Confined Excitons in 2-Dimensional Materials. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-01482-7_1

Download citation

Publish with us

Policies and ethics