Skip to main content

Approaches to Fault Detection for Heating Systems Using CP Tensor Decompositions

  • Conference paper
  • First Online:
Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2017)

Abstract

Two new signal-based and one model-based fault detection methods using canonical polyadic (CP) tensor decomposition algorithms are presented, and application examples of heating systems are given for all methods. The first signal-based fault detection method uses the factor matrices of a data tensor directly, the second calculates expected values from the decomposed tensor and compares these with measured values to generate the residuals. The third fault detection method is based on multi-linear models represented by parameter tensors with elements computed by subspace parameter identification algorithms and data for different but structured operating regimes. In case of missing data or model parameters in tensor representation, an approximation method based on a special CP tensor decomposition algorithm for incomplete tensors is proposed, called the decompose-and-unfold method. As long as all relevant dynamics has been recorded, this method approximates – also from incomplete data – models for all operating regimes, which can be used for residual generation and fault detection, e.g. by parity equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51, 455–500 (2009)

    Article  MathSciNet  Google Scholar 

  2. Rehault, N., Lichtenberg, G., Schmidt, F., Harmsen, A.: Modellbasierte Qualitätssicherung des energetischen Gebäudebetriebs (ModQS). Technical report, Abschlussbericht (2013)

    Google Scholar 

  3. Katipamula, S., Brambley, M.: Methods for fault detection, diagnostics, and prognostics for building systems - a review, Part I. HVAC&R Res. 11, 3–25 (2005)

    Article  Google Scholar 

  4. Isermann, R., Balle, P.: Trends in the application of model-based fault detection and diagnosis of technical processes. Control. Eng. Pract. 5, 709–719 (1997)

    Article  Google Scholar 

  5. Ding, S.X.: Model-Based Fault Diagnosis Techniques. Springer, Heidelberg (2008)

    Google Scholar 

  6. Venkatasubramanian, V., Rengaswamy, R., Kavuri, S.N., Yin, K.: A review of process fault detection and diagnosis: Part III: process history based methods. Comput. Chem. Eng. 27, 327–346 (2003)

    Article  Google Scholar 

  7. Lichtenberg, G.: Modellbasierter Reglerentwurf komplexer Gebäudeautomationssysteme. In: OBSERVE Workshop - Nichtwohngebäude energieeffizient betreiben. (2017)

    Google Scholar 

  8. Lunze, J.: Automatisierungstechnik: Methoden für die Überwachung und Steuerung kontinuierlicher und ereignisdiskreter Systeme. Oldenbourg Verlag (2012)

    Google Scholar 

  9. Jagpal, R.: EBC Annex 34 - computer aided evaluation of HVAC system performance - technical synthesis report: computer aided evaluation of HVAC system performance (2006)

    Google Scholar 

  10. Pangalos, G.: Model-based controller design methods for heating systems. Dissertation, Hamburg University of Technology (2015)

    Google Scholar 

  11. Lichtenberg, G.: Hybrid tensor systems. Habilitation, Hamburg University of Technology (2011)

    Google Scholar 

  12. Pangalos, G., Eichler, A., Lichtenberg, G.: Hybrid multilinear modeling and applications. In: Obaidat, M., Koziel, S., Kacprzyk, J., Leifsson, L., Ören, T. (eds.) Simulation and Modeling Methodologies, Technologies and Applications, pp. 71–85. Springer, Cham (2015)

    Google Scholar 

  13. Liberzon, D.: Switching in Systems and Control. Systems & Control: Foundations & Applications. Birkhäuser, Boston (2003)

    Book  Google Scholar 

  14. Sewe, E., Pangalos, G., Lichtenberg, G.: Fault detection for heating systems using tensor decompositions of multi-linear models. In: 7th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, Madrid (2017)

    Google Scholar 

  15. Van Overschee, P., De Moor, B.: Subspace Identification for Linear Systems: Theory - Implementation - Applications. Springer, Boston (2012)

    MATH  Google Scholar 

  16. Mulders, A.V., Schoukens, J., Volckaert, M., Diehl, M.: Two nonlinear optimization methods for black box identification compared. IFAC Proc. Vol. 42, 1086–1091 (2009)

    Article  Google Scholar 

  17. Paduart, J., Lauwers, L., Swevers, J., Smolders, K., Schoukens, J., Pintelon, R.: Identification of nonlinear systems using polynomial nonlinear state space models. Automatica 46, 647–656 (2010)

    Article  MathSciNet  Google Scholar 

  18. Cichocki, A., Zdunek, R., Phan, A., Amari, S.: Nonnegative Matrix and Tensor Factorizations. Wiley, Chichester (2009)

    Book  Google Scholar 

  19. Müller, T., Kruppa, K., Lichtenberg, G., Réhault, N.: Fault detection with qualitative models reduced by tensor decomposition methods. IFAC-PapersOnLine 48, 416–421 (2015)

    Article  Google Scholar 

  20. Kiers, H.A.: Towards a standardized notation and terminology in multiway analysis. J. Chemom. 14, 105–122 (2000)

    Article  MathSciNet  Google Scholar 

  21. Cichocki, A., Mandic, D., De Lathauwer, L., Zhou, G., Zhao, Q., Caiafa, C., Phan, H.A.: Tensor decompositions for signal processing applications: from two-way to multiway component analysis. IEEE Signal Process. Mag. 32, 145–163 (2015)

    Article  Google Scholar 

  22. Vervliet, N., Debals, O., Sorber, L., Lathauwer, L.D.: Breaking the curse of dimensionality using decompositions of incomplete tensors: tensor-based scientific computing in big data analysis. IEEE Signal Process. Mag. 31, 71–79 (2014)

    Article  Google Scholar 

  23. Vervliet, N., Debals, O., Sorber, L., Van Barel, M., De Lathauwer, L.: Tensorlab user guide (2016)

    Google Scholar 

  24. Vervliet, N., Debals, O., Sorber, L., Van Barel, M., De Lathauwer, L.: Tensorlab 3.0 (2016). www.tensorlab.net

  25. Murray-Smith, R., Johansen, T.A.: Multiple Model Approaches to Modelling and Control. Taylor and Francis, London (1997)

    Google Scholar 

  26. Ljung, L.: System identification toolbox: user’s guide (2016)

    Google Scholar 

  27. Fanaee-T, H., Gama, J.: Tensor-based anomaly detection: an interdisciplinary survey. Knowl. Based Syst. 98, 130–147 (2016)

    Article  Google Scholar 

  28. Gertler, J.: Analytical redundancy methods in fault detection and isolation. In: Preprints of IFAC/IMACS Symposium on Fault Detection, Supervision and Safety for Technical Processes, SAFEPROCESS 1991, pp. 9–21 (1991)

    Google Scholar 

  29. Isermann, R.: Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance. Springer, Heidelberg (2006)

    Book  Google Scholar 

  30. Sewe, E., Harmsen, A., Pangalos, G., Lichtenberg, G.: Umsetzung eines neuen Konzepts zur Mehrkesselregelung mit Durchflusssensoren. HLH Lüftung/Klima - Heizung/Sanitär - Gebäudetechnik 1, 37–42 (2012)

    Google Scholar 

  31. Pangalos, G., Lichtenberg, G.: Approach to boolean controller design by algebraic relaxation for heating systems. IFAC Proc. Vol. 45, 210–215 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the project OBSERVE of the Federal Ministry for Economic Affairs and Energy, Germany (Grant-No.: 03ET1225C) and partly supported by the Free and Hanseatic City of Hamburg (Hamburg City Parliament publication 20/11568). Most of the work of the first author was done during his time at PLENUM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Sewe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sewe, E., Pangalos, G., Lichtenberg, G. (2019). Approaches to Fault Detection for Heating Systems Using CP Tensor Decompositions. In: Obaidat, M., Ören, T., Rango, F. (eds) Simulation and Modeling Methodologies, Technologies and Applications . SIMULTECH 2017. Advances in Intelligent Systems and Computing, vol 873. Springer, Cham. https://doi.org/10.1007/978-3-030-01470-4_8

Download citation

Publish with us

Policies and ethics