Skip to main content

Modeling Performance and Energy Efficiency of Virtualized Flexible Networks

  • Conference paper
  • First Online:
Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2017)

Abstract

We examine some aspects of modelling and control in modern telecommunication networks, in the light of their evolution toward a completely virtualised paradigm on top of a flexible physical infrastructure. The trade-off between performance indicators related to user satisfaction of services (e.g., in terms of perceived quality, delay and ease of the interaction) and the energy consumption induced on the physical infrastructure is considered with some attention. In this respect, we provide a discussion of potential problems and ways to face them, along with a short description of the approaches taken in some European project activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Software-defined networking: the new norm for networks. In: Open Networking Foundation Whitepaper (2012). https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf

  2. Nunes, B.A.A., Mendonça, M., Nguyen, X.-N., Obraczka, K., Turletti, T.: A survey of software-defined networking: past, present, and future of programmable networks. IEEE Commun. Surv. Tut. 16(3), 1617–1634 (2014)

    Article  Google Scholar 

  3. Kreutz, D., Ramos, F.M.V., Veríssimo, P.E., Rothenberg, C.E., Azodolmolky, S., Uhlig, S.: Software-defined networking: a comprehensive survey. Proc. IEEE 103(1), 14–76 (2015)

    Article  Google Scholar 

  4. ONF TR-521, SDN Architecture (2016). https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR-521_SDN_Architecture_issue_1.1.pdf

  5. ETSI GS NFV 002 V1.1.1 (2013-10) Network Functions Virtualization (NFV); Architectural Framework. http://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v010101p.pdf

  6. Mijumbi, R., Serrat, J., Gorricho, J.-L., Bouten, N., De Turck, F., Boutaba, R.: Network function virtualization: state-of-the-art and research challenges. IEEE Commun. Surv. Tut. 18(1), 236–262 (2016)

    Article  Google Scholar 

  7. Network functions virtualisation. In: Introductory White Paper, ETSI (2012). https://portal.etsi.org/nfv/nfv_white_paper.pdf

  8. Synergy Research Group (2016). https://www.srgresearch.com/articles/enterprise-spending-nudged-downwards-2016-cisco-maintains-big-lead

  9. http://www.etsi.org/technologies-clusters/technologies/multi-access-edge-computing

  10. Manzalini, A., et al.: Towards 5G software-defined ecosystems – technical challenges, business sustainability and policy issues. In: IEEE SDN Initiative Whitepaper (2016). http://resourcecenter.fd.ieee.org/fd/product/white-papers/FDSDNWP0002

  11. Expert Advisory Group of the European Technology platform Networld 2020, Strategic Research and Innovation Agenda (2016). Pervasive Mobile Virtual Services. https://www.networld2020.eu/wp-content/uploads/2014/02/SRIA_final.pdf

  12. Ordonez-Lucena, J., Ameigeiras, P., Lopez, D., Ramos-Munoz, J.J., Lorca, J., Folgueira, J.J.: Network slicing for 5G with SDN/NFV: concepts architectures and challenges. IEEE Commun. Mag. 55(5), 80–87 (2017)

    Article  Google Scholar 

  13. Suarez, L., Nuaymi, L., Bonnin, J.-M.: An overview and classification of research approaches in green wireless networks. EURASIP J. Wirel. Commun. Netw. 2012, 142 (2012)

    Article  Google Scholar 

  14. Orgerie, A.C., Dias de Assunção, M., Lefevre, L.: A survey on techniques for improving the energy efficiency of large scale distributed systems. ACM Comp. Surv. 46(4), 1–35 (2014)

    Article  Google Scholar 

  15. Moghaddam, F.A., Lago, P., Grosso, P.: Energy-efficient networking solutions in cloud-based environments: a systematic literature review. ACM Comp. Surv. 47(4), 64.1–64.32 (2015)

    Article  Google Scholar 

  16. Bolla, R., Bruschi, R., Davoli, F., Cucchietti, F.: Energy efficiency in the future internet: a survey of existing approaches and trends in energy-aware fixed network infrastructures. IEEE Commun. Surv. Tut. 13(2), 223–244 (2011)

    Article  Google Scholar 

  17. Bianzino, A.P., Chaudet, C., Rossi, D., Rougier, J.-L.: A survey of green networking research. IEEE Commun. Surv. Tut. 14(1), 3–20 (2012)

    Article  Google Scholar 

  18. Idzikowski, F., Chiaraviglio, F.L., Cianfrani, A., López Vizcaíno, A.J., Polverini, M., Ye, M.Y.: A survey on energy-aware design and operation of core networks. IEEE Commun. Surv. Tut. 18(2), 1453–1499 (2016)

    Article  Google Scholar 

  19. Global e-Sustainability Initiative (GeSI), SMARTer2020: The Role of ICT in Driving a Sustainable Future. http://gesi.org/SMARTer2020

  20. http://uefi.org/specifications

  21. Bolla, R., Bruschi, R., Davoli, F., Cucchietti, F.: Setting the course for a green internet. Science 342(6164), 1316 (2013)

    Article  Google Scholar 

  22. Bolla, R., et al.: The green abstraction layer: a standard power management interface for next-generation network devices. IEEE Intern. Comp. 17(2), 82–86 (2013)

    Article  Google Scholar 

  23. Bolla, R., et al.: A northbound interface for power management in next generation network devices. IEEE Commun. Mag. 52(1), 149–157 (2014)

    Article  Google Scholar 

  24. Green Abstraction Layer (GAL): Power management capabilities of the future energy telecommunication fixed network nodes (2013) ETSI Std. 203 237 version 1.1.1. http://www.etsi.org/deliver/etsi_es/203200_203299/203237/01.01.01_60/es_203237v010101p.pdf

  25. Bolla, R., Bruschi, R., Carrega, A., Davoli, F.: Green networking with packet processing engines: modeling and optimization. IEEE/ACM Trans. Netw. 22(1), 110–123 (2014)

    Article  Google Scholar 

  26. Bolla, R., Bruschi, R., Carrega, A., Davoli, F., Pajo, J.F.: Corrections to: “Green Networking with Packet Processing Engines: Modeling and Optimization”. IEEE/ACM Trans. Netw. (2017). https://doi.org/10.1109/TNET.2017.2761892

    Article  Google Scholar 

  27. Niewiadomska-Szynkiewicz, E., Sikora, A., Arabas, P., Kołodziej, J.: Control system for reducing energy consumption in backbone computer network. Concurr. Computat. Pract. Exper. 25, 1738–1754 (2013)

    Article  Google Scholar 

  28. Kamola, M., Niewiadomska-Szynkiewicz, E., Arabas, P., Sikora, A.: Energy-saving algorithms for the control of backbone networks: a survey. J. Telecommun. Inform. Technol. 2, 13–20 (2016)

    Google Scholar 

  29. Filipiak, J.: Modelling and Control of Dynamic Flows in Communication Networks. Springer-Verlag, Berlin (1988)

    Book  Google Scholar 

  30. Bruschi, R., Davoli, F., Mongelli, M.: Adaptive frequency control of packet processing engines in telecommunication networks. IEEE Commun. Lett. 18(7), 1135–1138 (2014)

    Article  Google Scholar 

  31. Neely, M.J.: Stochastic Network Optimization with Application to Communication and Queueing Systems. Morgan & Claypool, San Rafael (2010)

    MATH  Google Scholar 

  32. Bruschi, R., Carrega, A., Davoli, F.: A game for energy-aware allocation of virtualized network functions. J. Elec. Comp. Eng. 2016, 4067186 (2016)

    MathSciNet  Google Scholar 

  33. Aicardi, M., Bruschi, R., Davoli, F., Lago, P.: A decentralized team routing strategy among telecom operators in an energy-aware network. In: Proceedings of SIAM Conference on Control and its Application, Paris, France, July 2015, pp. 340–347 (2015)

    Chapter  Google Scholar 

  34. Rahman, M.M., Despins, C., Affes, S.: Analysis of CAPEX and OPEX benefits of wireless access virtualization. In: IEEE Internat Conference Communications (ICC), Workshop on Energy Efficiency in Wireless Networks & Wireless Networks for Energy Efficiency (E2Nets), Budapest, Hungary (2013)

    Google Scholar 

  35. Bolla, R., Bruschi, R., Davoli, F., Lombardo, C., Pajo, J.F., Sanchez, O.R.: The dark side of network functions virtualization: a perspective on the technological sustainability. In: IEEE Internat Conference on Communications (ICC), Paris, France, 2017, pp. 1–7 (2017)

    Google Scholar 

  36. Woo, D., Lee, H.-S.: Extending Amdahl’s Law for energy-efficient computing in the many-core era. IEEE Comput. 41(12), 24–31 (2008)

    Article  Google Scholar 

  37. Bruschi, R., Davoli, F., Lago, P., Pajo, J.F.: Joint power scaling of processing resources and consolidation of virtual network functions. In: 5th IEEE International Conference on Cloud Networking (CloudNet), Pisa, Italy, October 2016, pp. 70–75 (2016)

    Google Scholar 

  38. Coffman Jr., E.G., Garey, M.R., Johnson, D.S.: Approximation algorithms for bin packing: a survey. In: Hochbaum, D.S. (ed.) Approximation Algorithms for NP-Hard Problems. PWS Publishing, Boston (1996)

    Google Scholar 

  39. Bolla, R., Bruschi, R., Davoli, F., Depasquale, E.V.: Energy-efficient management and control in video distribution networks: “Legacy” hardware based solutions and perspectives of virtualized networking environments. In: Popescu, A. (ed.) Guide to Greening Video Distribution Networks - Energy-Efficient Internet Video Delivery, pp. 25–57. Springer (2018)

    Google Scholar 

  40. Cassidy, A.S., Andreou, A.G.: Beyond Amdahl’s Law: an objective function that links multiprocessor performance gains to delay and energy. IEEE Trans. Comp. 61(8), 1110–1126 (2012)

    Article  MathSciNet  Google Scholar 

  41. http://www.input-project.eu/

  42. http://www.input-project.eu/index.php/outcomes/publications

  43. Bruschi, R., Lago, P., Lombardo, C., Mangialardi, S.: OpenVolcano: an open-source software platform for fog computing. In: 28th International Teletraffic Congress (ITC 28) 1st International Workshop on Programmability for Cloud Networks and Applications (PROCON), Wuerzburg, Germany, September 2016

    Google Scholar 

  44. http://openvolcano.org/

  45. Bolla, R., et al.: Design, development and orchestration of 5G-ready applications over sliced programmable infrastructure. In: 29th International Teletraffic Congress (ITC 28) 1st International Workshop on Softwarized Infrastructures for 5G and Fog Computing (Soft5 2017), Genoa, Italy, September 2017, pp. 13–18 (2017)

    Google Scholar 

  46. http://www.matilda-5g.eu/index.php

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Davoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bolla, R., Bruschi, R., Davoli, F., Pajo, J.F. (2019). Modeling Performance and Energy Efficiency of Virtualized Flexible Networks. In: Obaidat, M., Ören, T., Rango, F. (eds) Simulation and Modeling Methodologies, Technologies and Applications . SIMULTECH 2017. Advances in Intelligent Systems and Computing, vol 873. Springer, Cham. https://doi.org/10.1007/978-3-030-01470-4_14

Download citation

Publish with us

Policies and ethics