Skip to main content

Simulation of Surface Plasmon Waves Based on Kretschmann Configuration Using the Finite Element Method

  • Conference paper
  • First Online:
  • 414 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 873))

Abstract

This paper presents the simulation of optically activated surface plasmon waves based on Kretschmann configuration by using prism. Simulated electric fields of the surface plasmon wave which appears at the interface between the metal thin film and dielectric layer are observed. The occurences of surface plasmon wave can be applied to biomolecular sensing and high speed data communications at the THz level. The simulations employ the finite element method (FEM). The light source is the 632.5 nm red laser which is economical and easy to obtained commercially. Two simulation models are conducted. The first simulation model employs copper thin film on the prism and air as the dielectric layer. This one is intended to find the most suitable copper thin film thickness to produce surface plasmon waves. Copper thin film is used because it is a noble metal which is less expensive than gold but has better conductivity than gold. The second simulation model employs silver, another noble metal which is also less expensive than gold. Silver thin film on prism together with magnesium chloride solution as dielectric layer are simulated. Concentrations of the magnesium chloride solution are varied to find the one which produces good surface plasmon wave pattern. Thus suitable to be used as sensors for biomoleculars such as DNAs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Naik, G.V., Shalaev, V.M., Boltasseva, A.: Alternative plasmonic materials_beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013)

    Article  Google Scholar 

  2. Robusto, P., Braunstein, R.: Optical measurements of the surface plasmon of copper. Phys. Stat. sol. (b) 107, 443–449 (1981)

    Article  Google Scholar 

  3. Kravets, V.G., et al.: Graphene-protected copper and silver plasmonics. Sci. Rep. 4(5517), 1–7 (2014)

    Google Scholar 

  4. Serra, A., Filippo, E., Re, M., Palmisano, M., Vittori-Antisari, M., Buccolieri, A.: Non-functionalized silver nanoparticles for a localized surface plasmon resonance-based glucose sensor. Nanotechnology 20(16), 165501 (2009)

    Article  Google Scholar 

  5. Zhang, X., Wei, M., Bingjing, L., Liu, Y., Liua, X., Wei, W.: Sensitive colorimetric detection of glucose and cholesterol by using Au@Ag core–shell nanoparticles. RSC Adv. 6, 35001–35007 (2016)

    Article  Google Scholar 

  6. Chung, H.Y., et al.: Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using oblique deposited silver nanorods. Nanoscale Res. Lett. 9(476), 1–5 (2014)

    MathSciNet  Google Scholar 

  7. Liu, R.J., et al.: Surface plasmon resonance biosensor for sensitive detection of microRNA and cancer cell using multiple signal amplification strategy. Biosens. Bioelectron. 87, 433–438 (2017)

    Article  Google Scholar 

  8. Hsieh, S.C., Chang, C.C., Lu, C.C., Wei, C.F., Lin, C.S., Lai, H.C., Lin, C.W.: Rapid identification of Mycobacterium tuberculosis infection by a new array format-based surface plasmon resonance method. Nanoscale Res. Lett. 7, 1–6 (2012)

    Article  Google Scholar 

  9. Mitchell, J.: Small molecule immunosensing using surface plasmon resonance. Sensors 10, 7323–7346 (2010)

    Article  Google Scholar 

  10. Mariani, S., et al.: Investigating nanoparticle properties in plasmonic nanoarchitectures with DNA by surface plasmon resonance imaging. Chem. Commun. 51, 6587–6590 (2015)

    Article  Google Scholar 

  11. Ahmed, F.E., Wiley, J.E., Weidner, D.A., Bonnerup, C., Mota, H.: Surface plasmon resonance (SPR) spectrometry as a tool to analyze nucleic acid-protein interactions in crude cellular extracts. Cancer Genomics Proteomics 7(6), 303–310 (2010)

    Google Scholar 

  12. Teh, H.F., Peh, W.Y.X., Su, X., Thomsen, J.S.: Characterization of protein-DNA interactions using surface plasmon resonance spectroscopy with various assay schemes. Biochemistry 46(8), 2127–2135 (2007)

    Article  Google Scholar 

  13. Zhang, Y., Liu, L., Sha, J., Ni, Z., Yi, H., Chen, Y.: Nanopore detection of DNA molecules in magnesium chloride solutions. Nanoscale Res. Lett. 8, 245 (2013)

    Article  Google Scholar 

  14. Sternberg, K., et al.: Magnesium used in bioabsorbable stents controls smooth muscle cell proliferation and stimulates endothelial cells in vitro. J. Biomed. Mater. Res. B Appl. Biomater. 100(1), 41–50 (2012)

    Article  Google Scholar 

  15. Suzuki, Y., Shimada, S., Hatta, A., Suëtaka, W.: Enhancement of the IR absorption of a thin film on gold in the otto ATR configuration. Surf. Sci. Lett. (219), L595–L600 (1989)

    Article  Google Scholar 

  16. Leskova, T.A., Leyva-Lucero, M., Méndez, E.R., Maradudin, A.A., Novikov, I.V.: The surface enhanced second harmonic generation of light from a randomly rough metal surface in the Kretschmann geometry. Opt. Commun. (183), 529–545 (2000)

    Article  Google Scholar 

  17. Iadicicco, A., Cusano, A., Campopiano, S., Cutolo, A., Giordano, M.: Thinned fiber Bragg grating as refractive index sensors. IEEE Sens. J. 5(6), 1288–1295 (2005)

    Article  Google Scholar 

  18. Du, W., Zhao, F.: Surface plasmon resonance based silicon carbide optical waveguide sensor. Mater. Lett. (115), 92–95 (2014)

    Article  Google Scholar 

  19. Leelawattananon, T., Lorchalearnrat, K., Chittayasothorn S.: Simulation of copper thin film thickness optimization for surface plasmon using the finite element method. In: the 7th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH), pp. 188–195 (2017)

    Google Scholar 

  20. Raether, H.: Surface Plasmons on Smooth Surfaces. Springer, Heidelberg (1988)

    Book  Google Scholar 

  21. Refractive Index Database. https://refractiveindex.info/. Accessed 07 Jan 2018

  22. Said, F.A., Menon, P.S., Nawi, M.N., Zain, A.R.M., Jalar, A., Majlis, B.Y.: Copper-graphene SPR-based biosensor for urea detection. In: IEEE International Conference on Semiconductor Electronics (ICSE), pp. 264–267 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanaporn Leelawattananon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leelawattananon, T., Chittayasothorn, S. (2019). Simulation of Surface Plasmon Waves Based on Kretschmann Configuration Using the Finite Element Method. In: Obaidat, M., Ören, T., Rango, F. (eds) Simulation and Modeling Methodologies, Technologies and Applications . SIMULTECH 2017. Advances in Intelligent Systems and Computing, vol 873. Springer, Cham. https://doi.org/10.1007/978-3-030-01470-4_1

Download citation

Publish with us

Policies and ethics