Skip to main content

Signcryption with Quantum Random Oracles

  • Conference paper
  • First Online:
Provable Security (ProvSec 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11192))

Included in the following conference series:

  • 760 Accesses

Abstract

Signcryption is a cryptographic scheme that achieves the functionalities of both public-key encryption and digital signatures. It is an important scheme for realizing a mechanism of sending and/or receiving messages in a secure way, since it is understood that signcryption is a public-key based protocol to realize a secure channel from an insecure channel. On the other hand, various post-quantum cryptographic schemes have been proposed so far. Recently, several cryptographic schemes have been proposed in the quantum random oracle model where an adversary can submit quantum queries to a random oracle. In this paper, we propose a generic construction of signcryption in the quantum random oracle model for the first time. Our construction achieves both of the strongest confidentiality and strongest integrity in the multi-user setting tightly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambainis, A., Rosmanis, A., Unruh, D.: Quantum attacks on classical proof systems: the hardness of quantum rewinding. In: FOCS, pp. 474–483. IEEE Computer Society (2014)

    Google Scholar 

  2. An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_6

    Chapter  Google Scholar 

  3. Baek, J., Steinfeld, R., Zheng, Y.: Formal proofs for the security of signcryption. J. Cryptol. 20(2), 203–235 (2007)

    Article  MathSciNet  Google Scholar 

  4. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_3

    Chapter  MATH  Google Scholar 

  5. Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a quantum computing world. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 361–379. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_21

    Chapter  MATH  Google Scholar 

  6. Chiba, D., Matsuda, T., Schuldt, J.C.N., Matsuura, K.: Efficient generic constructions of signcryption with insider security in the multi-user setting. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 220–237. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21554-4_13

    Chapter  Google Scholar 

  7. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_12

    Chapter  MATH  Google Scholar 

  8. Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: IND-CCA-secure key encapsulation mechanism in the quantum random oracle model, revisited. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 96–125. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_4

    Chapter  Google Scholar 

  9. Kiltz, E., Lyubashevsky, V., Schaffner, C.: A concrete treatment of Fiat-Shamir signatures in the quantum random-oracle model. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 552–586. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_18

    Chapter  MATH  Google Scholar 

  10. Libert, B., Quisquater, J.-J.: Efficient signcryption with key privacy from gap Diffie-Hellman groups. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 187–200. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24632-9_14

    Chapter  MATH  Google Scholar 

  11. Matsuda, T., Matsuura, K., Schuldt, J.C.N.: Efficient constructions of signcryption schemes and signcryption composability. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 321–342. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10628-6_22

    Chapter  Google Scholar 

  12. Nakano, R., Shikata, J.: Constructions of signcryption in the multi-user setting from identity-based encryption. In: Stam, M. (ed.) IMACC 2013. LNCS, vol. 8308, pp. 324–343. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45239-0_19

    Chapter  Google Scholar 

  13. Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation mechanism in the quantum random oracle model. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 520–551. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_17

    Chapter  MATH  Google Scholar 

  14. Tan, C.H.: Signcryption scheme in multi-user setting without random oracles. In: Matsuura, K., Fujisaki, E. (eds.) IWSEC 2008. LNCS, vol. 5312, pp. 64–82. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89598-5_5

    Chapter  Google Scholar 

  15. Targhi, E.E., Unruh, D.: Post-quantum security of the Fujisaki-Okamoto and OAEP transforms. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 192–216. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_8

    Chapter  MATH  Google Scholar 

  16. Zhandry, M.: Secure identity-based encryption in the quantum random oracle model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 758–775. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_44

    Chapter  MATH  Google Scholar 

  17. Zheng, Y.: Digital signcryption or how to achieve cost(signature & encryption) \(<<\) cost(signature) + cost(encryption). In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294. Springer, Berlin (1997). https://doi.org/10.1007/BFb0052234

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shingo Sato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sato, S., Shikata, J. (2018). Signcryption with Quantum Random Oracles. In: Baek, J., Susilo, W., Kim, J. (eds) Provable Security. ProvSec 2018. Lecture Notes in Computer Science(), vol 11192. Springer, Cham. https://doi.org/10.1007/978-3-030-01446-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01446-9_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01445-2

  • Online ISBN: 978-3-030-01446-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics