Advertisement

Interstitial Brachytherapy - Definitive and Adjuvant

Chapter
  • 651 Downloads
Part of the Practical Guides in Radiation Oncology book series (PGRO)

Abstract

Gynecologic interstitial brachytherapy (ISBT) is the placement of catheters into and surrounding a tumor, with either a high-dose-rate (HDR) and low-dose-rate (LDR) technique. Using an HDR technique, the catheters are afterloaded with radioactive sources, the most common isotope being 192Ir. Brachytherapy (BT) is a key component in the treatment of gynecological cancers, as it allows for dose escalation to the tumor while minimizing the dose to surrounding critical organs at risk, such as the sigmoid, bladder, and rectum. Patterns of care studies established the essential role of BT in the management of cervical cancer and linked its use to improvements in pelvic control and disease-free survival. Furthermore, the use of image-guided BT shows improvement in pelvic control and disease-free survival based on a large review from the American Brachytherapy Cervical Cancer Task Force.

References

  1. 1.
    Hanks GE, Herring DF, Kramer S. Patterns of care outcome studies. Results of the national practice in cancer of the cervix. Cancer. 1983;51(5):959–67.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Mayadev J, et al. American Brachytherapy Task Group Report: a pooled analysis of clinical outcomes for high-dose-rate brachytherapy for cervical cancer. Brachytherapy. 2017;16(1):22–43.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Potter R, et al. Clinical impact of MRI assisted dose volume adaptation and dose escalation in brachytherapy of locally advanced cervix cancer. Radiother Oncol. 2007;83(2):148–55.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Potter R, et al. Clinical outcome of protocol based image (MRI) guided adaptive brachytherapy combined with 3D conformal radiotherapy with or without chemotherapy in patients with locally advanced cervical cancer. Radiother Oncol. 2011;100(1):116–23.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Lee LJ, Damato AL, Viswanathan AN. Clinical outcomes of high-dose-rate interstitial gynecologic brachytherapy using real-time CT guidance. Brachytherapy. 2013;12(4):303–10.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Demanes DJ, et al. High dose rate transperineal interstitial brachytherapy for cervical cancer: high pelvic control and low complication rates. Int J Radiat Oncol Biol Phys. 1999;45(1):105–12.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Hsu IC, et al. A comparison between tandem and ovoids and interstitial gynecologic template brachytherapy dosimetry using a hypothetical computer model. Int J Radiat Oncol Biol Phys. 2002;52(2):538–43.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Davidson MT, et al. Image-guided cervix high-dose-rate brachytherapy treatment planning: does custom computed tomography planning for each insertion provide better conformal avoidance of organs at risk? Brachytherapy. 2008;7:37–42.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Gao M, et al. 3D CT-based volumetric dose assessment of 2D plans using GEC-ESTRO guidelines for cervical cancer brachytherapy. Brachytherapy. 2010;9(1):55–60.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Haie-Meder C, et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (I): concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV. Radiother Oncol. 2005;74(3):235–45.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Potter R, Haie-Meder C, Limbergenc E. Recommendations from gynaecological (GYN) GEC ESTRO working group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy—3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology. Radiother Oncol. 2006;78:67–77.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Pötter R, et al. Present status and future of high-precision image guided adaptive brachytherapy for cervix carcinoma. Acta Oncol. 2008;47(7):1325–36.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    van Dyk S, Byram D, Bernshaw D. Use of 3D imaging and awareness of GEC-ESTRO recommendations for cervix cancer brachytherapy throughout Australia and New Zealand. J Med Imaging Radiat Oncol. 2010;54(4):383–7.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Pavamani S, et al. Image-guided brachytherapy for cervical cancer: a Canadian Brachytherapy Group survey. Brachytherapy. 2011;10(5):345–51.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Grover S, et al. Image guided cervical brachytherapy: 2014 survey of the American Brachytherapy Society. Int J Radiat Oncol Biol Phys. 2016;94(3):598–604.CrossRefGoogle Scholar
  16. 16.
    Sturdza A, et al. Image guided brachytherapy in locally advanced cervical cancer: improved pelvic control and survival in RetroEMBRACE, a multicenter cohort study. Radiother Oncol. 2016;120(3):428–33.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Kirisits C, et al. The Vienna applicator for combined intracavitary and interstitial brachytherapy of cervical cancer: design, application, treatment planning, and dosimetric results. Int J Radiat Oncol Biol Phys. 2006;65(2):624–30.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Fokdal L, et al. Image guided adaptive brachytherapy with combined intracavitary and interstitial technique improves the therapeutic ratio in locally advanced cervical cancer: analysis from the retroEMBRACE study. Radiother Oncol. 2016;120(3):434–40.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Martinez A, Cox RS, Edmundson GK. A multiple-site perineal applicator (MUPIT) for treatment of prostatic, anorectal, and gynecologic malignancies. Int J Radiat Oncol Biol Phys. 1984;10(2):297–305.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Mendez LC, et al. Three-dimensional-guided perineal-based interstitial brachytherapy in cervical cancer: a systematic review of technique, local control and toxicities. Radiother Oncol. 2017;123(2):312–8.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Fallon J, et al. Long term results from a prospective database on high dose rate (HDR) interstitial brachytherapy for primary cervical carcinoma. Gynecol Oncol. 2016.  https://doi.org/10.1016/j.ygyno.2016.10.020.CrossRefGoogle Scholar
  22. 22.
    Kamran SC, et al. Comparison of outcomes for MR-guided versus CT-guided high-dose-rate interstitial brachytherapy in women with locally advanced carcinoma of the cervix. Gynecol Oncol. 2017;145(2):284–90.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Manuel MM, et al. Outcomes with image-based interstitial brachytherapy for vaginal cancer. Radiother Oncol. 2016;120(3):486–92.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Dimopoulos JC, et al. Treatment of locally advanced vaginal cancer with radiochemotherapy and magnetic resonance image-guided adaptive brachytherapy: dose-volume parameters and first clinical results. Int J Radiat Oncol Biol Phys. 2012;82(5):1880–8.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Beriwal S, et al. High-dose rate brachytherapy (HDRB) for primary or recurrent cancer in the vagina. Radiat Oncol. 2008;3:7.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Mahantshetty U, et al. Clinical outcome of high-dose-rate interstitial brachytherapy in vulvar cancer: a single institutional experience. Brachytherapy. 2017;16(1):153–60.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Castelnau-Marchand P, et al. Brachytherapy as part of the conservative treatment for primary and recurrent vulvar carcinoma. Brachytherapy. 2017;16(3):518–25.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Kellas-Sleczka S, et al. Interstitial high-dose-rate brachytherapy in locally advanced and recurrent vulvar cancer. J Contemp Brachytherapy. 2016;8(1):32–40.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Kamran SC, Manuel MM, Catalano P, et al. MR-versus CT-based high-dose-rate interstitial brachytherapy for vaginal recurrence of endometrial cancer. Brachytherapy. 2017;16(6):1159–68.  https://doi.org/10.1016/j.brachy.2017.07.007.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Fokdal L, et al. Toward four-dimensional image-guided adaptive brachytherapy in locally recurrent endometrial cancer. Brachytherapy. 2014;13(6):554–61.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Vargo JA, et al. Definitive salvage for vaginal recurrence of endometrial cancer: the impact of modern intensity-modulated-radiotherapy with image-based HDR brachytherapy and the interplay of the PORTEC 1 risk stratification. Radiother Oncol. 2014;113(1):126–31.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Kamrava M, et al. American Brachytherapy Society recurrent carcinoma of the endometrium task force patterns of care and review of the literature. Brachytherapy. 2017;16:1129.PubMedCrossRefGoogle Scholar
  33. 33.
    Martinez-Monge R, et al. Phase II trial of image-based high-dose-rate interstitial brachytherapy for previously irradiated gynecologic cancer. Brachytherapy. 2014;13(3):219–24.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Mahantshetty U, et al. Reirradiation using high-dose-rate brachytherapy in recurrent carcinoma of uterine cervix. Brachytherapy. 2014;13(6):548–53.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Zolciak-Siwinska A, et al. Computed tomography-planned high-dose-rate brachytherapy for treating uterine cervical cancer. Int J Radiat Oncol Biol Phys. 2016;96(1):87–92.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Huang K, et al. High-dose-rate interstitial brachytherapy for the treatment of high-volume locally recurrent endometrial carcinoma. Brachytherapy. 2016;15(5):543–8.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Feddock J, et al. Outpatient template-guided permanent interstitial brachytherapy using 131Cs in gynecologic malignancies: initial report. Brachytherapy. 2017;16(2):393–401.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Girinsky T, et al. Overall treatment time in advanced cervical carcinomas: a critical parameter in treatment outcome. Int J Radiat Oncol Biol Phys. 1993;27(5):1051–6.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Perez CA, et al. Carcinoma of the uterine cervix. I. Impact of prolongation of overall treatment time and timing of brachytherapy on outcome of radiation therapy. Int J Radiat Oncol Biol Phys. 1995;32(5):1275–88.PubMedCrossRefGoogle Scholar
  40. 40.
    Shaverdian N, et al. Effects of treatment duration during concomitant chemoradiation therapy for cervical cancer. Int J Radiat Oncol Biol Phys. 2013;86(3):562–8.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Syed AMN, Puthawala A, Neblett D. Transperineal interstitial-intracavitary “Syed-Neblett” applicator in the treatment of carcinoma of the uterine cervix. Endocurie Hypertherm Oncol. 1986;2:1–13.Google Scholar
  42. 42.
    van der Vyver M, Halpern S, Joseph G. Patient-controlled epidural analgesia versus continuous infusion for labour analgesia: a meta-analysis. Br J Anaesth. 2002;89(3):459–65.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Dyer BA, et al. Sustainable gynecological brachytherapy in an increasingly cost-aware healthcare system: conversion of labor-intense interstitial brachytherapy to hybrid intracavitary brachytherapy for locally advanced cervical cancer. Brachytherapy. 2017;16(3):S58–9.CrossRefGoogle Scholar
  44. 44.
    Corn BW, et al. Improved treatment planning for the Syed-Neblett template using endorectal-coil magnetic resonance and intraoperative (laparotomy/laparoscopy) guidance: a new integrated technique for hysterectomized women with vaginal tumors. Gynecol Oncol. 1995;56(2):255–61.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Popowski Y, et al. Open magnetic resonance imaging using titanium-zirconium needles: improved accuracy for interstitial brachytherapy implants? Int J Radiat Oncol Biol Phys. 2000;47(3):759–65.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Viswanathan AN, et al. Magnetic resonance-guided interstitial therapy for vaginal recurrence of endometrial cancer. Int J Radiat Oncol Biol Phys. 2006;66(1):91–9.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Viswanathan AN, et al. A prospective trial of real-time magnetic resonance-guided catheter placement in interstitial gynecologic brachytherapy. Brachytherapy. 2013;12(3):240–7.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Feldmeier J, Mok E, Ditzel D, et al. A technique for transperineal template implants with compute tomographic guidance and dosimtery and local anesthesia. Endocurie Hypertherm Oncol. 1992;8:105–11.Google Scholar
  49. 49.
    Erickson B, Albano K, Gillin M. CT-guided interstitial implantation of gynecologic malignancies. Int J Radiat Oncol Biol Phys. 1996;36(3):699–709.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Eisbruch A, et al. Customized gynecologic interstitial implants: CT-based planning, dose evaluation, and optimization aided by laparotomy. Int J Radiat Oncol Biol Phys. 1998;40(5):1087–93.PubMedCrossRefGoogle Scholar
  51. 51.
    Nag S, et al. Interstitial brachytherapy for salvage treatment of vaginal recurrences in previously unirradiated endometrial cancer patients. Int J Radiat Oncol Biol Phys. 2002;54(4):1153–9.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Nag S, et al. The use of fluoroscopy to guide needle placement in interstitial gynecological brachytherapy. Int J Radiat Oncol Biol Phys. 1998;40(2):415–20.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Stock RG, et al. A new technique for performing Syed-Neblett template interstitial implants for gynecologic malignancies using transrectal-ultrasound guidance. Int J Radiat Oncol Biol Phys. 1997;37(4):819–25.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Sharma DN, et al. Use of transrectal ultrasound for high dose rate interstitial brachytherapy for patients of carcinoma of uterine cervix. J Gynecol Oncol. 2010;21(1):12–7.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Rodgers JR, et al. Toward a 3D transrectal ultrasound system for verification of needle placement during high-dose-rate interstitial gynecologic brachytherapy. Med Phys. 2017;44(5):1899–911.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Kamrava M. Potential role of ultrasound imaging in interstitial image based cervical cancer brachytherapy. J Contemp Brachytherapy. 2014;6(2):223–30.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Alcazar JL, Jurado M. Three-dimensional ultrasound for assessing women with gynecological cancer: a systematic review. Gynecol Oncol. 2011;120(3):340–6.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Beriwal S, et al. High-dose-rate interstitial brachytherapy for gynecologic malignancies. Brachytherapy. 2006;5(4):218–22.CrossRefGoogle Scholar
  59. 59.
    Beriwal S, et al. Three-dimensional image-based high-dose-rate interstitial brachytherapy for vaginal cancer. Brachytherapy. 2012;11(3):176–80.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Childers JM, Brainard P, Rogoff EE, Surwit EA. Laparoscopically assisted transperineal interstitial irradiation and surgical staging for advanced cervical carcinoma. Endocurie Hypertherm Oncol. 1994;10:83–6.Google Scholar
  61. 61.
    Recio FO, et al. Laparoscopic-assisted application of interstitial brachytherapy for locally advanced cervical carcinoma: results of a pilot study. Int J Radiat Oncol Biol Phys. 1998;40(2):411–4.PubMedCrossRefGoogle Scholar
  62. 62.
    Choi JC, et al. Potential decreased morbidity of interstitial brachytherapy for gynecologic malignancies using laparoscopy: a pilot study. Gynecol Oncol. 1999;73(2):210–5.PubMedCrossRefGoogle Scholar
  63. 63.
    Lim J, et al. The impact of maximum rectal distention and tandem angle on rectal dose delivered in 3D planned gynecologic high dose-rate brachytherapy. Int J Gynecol Cancer. 2013;23(6):1078–83.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Dimopoulos JC, et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (IV): basic principles and parameters for MR imaging within the frame of image based adaptive cervix cancer brachytherapy. Radiother Oncol. 2012;103(1):113–22.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Beriwal S, et al. American Brachytherapy Society consensus guidelines for interstitial brachytherapy for vaginal cancer. Brachytherapy. 2012;11(1):68–75.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Shah AP, et al. Toxicity associated with bowel or bladder puncture during gynecologic interstitial brachytherapy. Int J Radiat Oncol Biol Phys. 2010;77(1):171–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Tanderup K, et al. Magnetic resonance image guided brachytherapy. Semin Radiat Oncol. 2014;24(3):181–91.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Haack S, et al. Applicator reconstruction in MRI 3D image-based dose planning of brachytherapy for cervical cancer. Radiother Oncol. 2009;91(2):187–93.PubMedCrossRefGoogle Scholar
  69. 69.
    Hu Y, et al. Improve definition of titanium tandems in MR-guided high dose rate brachytherapy for cervical cancer using proton density weighted MRI. Radiat Oncol. 2013;8:16.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Schindel J, et al. Magnetic resonance imaging (MRI) markers for MRI-guided high-dose-rate brachytherapy: novel marker-flange for cervical cancer and marker catheters for prostate cancer. Int J Radiat Oncol Biol Phys. 2013;86(2):387–93.PubMedCrossRefGoogle Scholar
  71. 71.
    Potter R, et al. Recommendations from gynaecological (GYN) GEC ESTRO working group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology. Radiother Oncol. 2006;78(1):67–77.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Report 89. J ICRU. 2013;13(1-2):NP.  https://doi.org/10.1093/jicru/ndw042.
  73. 73.
    Viswanathan AN, et al. Computed tomography versus magnetic resonance imaging-based contouring in cervical cancer brachytherapy: results of a prospective trial and preliminary guidelines for standardized contours. Int J Radiat Oncol Biol Phys. 2007;68(2):491–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Glaser S, Kim H, Beriwal S. Effect of imaging modality on urethral dosimetry in patients undergoing gynecological brachytherapy. Brachytherapy. 2016;15:S87.CrossRefGoogle Scholar
  75. 75.
    Georg P, et al. Dose effect relationship for late side effects of the rectum and urinary bladder in magnetic resonance image-guided adaptive cervix cancer brachytherapy. Int J Radiat Oncol Biol Phys. 2012;82(2):653–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Charra-Brunaud C, et al. Impact of 3D image-based PDR brachytherapy on outcome of patients treated for cervix carcinoma in France: results of the French STIC prospective study. Radiother Oncol. 2012;103(3):305–13.PubMedCrossRefGoogle Scholar
  77. 77.
    Mayadev JS, Benedict S. In: Benedict S, Mayadev JS, Kamrava M, editors. Handbook of image-guided brachytherapy. Cham: Springer; 2017. p. 630.CrossRefGoogle Scholar
  78. 78.
    Denham JW, Hauer-Jensen M. The radiotherapeutic injury—a complex ‘wound’. Radiother Oncol. 2002;63(2):129–45.PubMedCrossRefGoogle Scholar
  79. 79.
    Booth C, et al. Acute gastrointestinal syndrome in high-dose irradiated mice. Health Phys. 2012;103(4):383–99.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Nout RA, et al. Five-year quality of life of endometrial cancer patients treated in the randomised Post Operative Radiation Therapy in Endometrial Cancer (PORTEC-2) trial and comparison with norm data. Eur J Cancer. 2012;48(11):1638–48.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Feyer P, Jahn F, Jordan K. Radiation induced nausea and vomiting. Eur J Pharmacol. 2014;722:165–71.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Nussbaum ML, Campana TJ, Weese JL. Radiation-induced intestinal injury. Clin Plast Surg. 1993;20(3):573–80.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Chitapanarux I, et al. Randomized controlled trial of live lactobacillus acidophilus plus bifidobacterium bifidum in prophylaxis of diarrhea during radiotherapy in cervical cancer patients. Radiat Oncol. 2010;5:31.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Urbancsek H, et al. Results of a double-blind, randomized study to evaluate the efficacy and safety of Antibiophilus in patients with radiation-induced diarrhoea. Eur J Gastroenterol Hepatol. 2001;13(4):391–6.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Delia P, et al. Use of probiotics for prevention of radiation-induced diarrhea. World J Gastroenterol. 2007;13(6):912–5.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Salminen E, et al. Preservation of intestinal integrity during radiotherapy using live Lactobacillus acidophilus cultures. Clin Radiol. 1988;39(4):435–7.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Kilic D, et al. Double-blinded, randomized, placebo-controlled study to evaluate the effectiveness of sulphasalazine in preventing acute gastrointestinal complications due to radiotherapy. Radiother Oncol. 2000;57(2):125–9.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Dennis K, et al. Radiotherapy-induced nausea and vomiting. Expert Rev Pharmacoecon Outcomes Res. 2011;11(6):685–92.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Vernia P, et al. Topical butyrate for acute radiation proctitis: randomised, crossover trial. Lancet. 2000;356(9237):1232–5.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Hille A, et al. Sodium butyrate enemas in the treatment of acute radiation-induced proctitis in patients with prostate cancer and the impact on late proctitis. A prospective evaluation. Strahlenther Onkol. 2008;184(12):686–92.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Leadon SA. Repair of DNA damage produced by ionizing radiation: a minireview. Semin Radiat Oncol. 1996;6(4):295–305.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Deveney CW, Lewis FR Jr, Schrock TR. Surgical management of radiation injury of the small and large intestine. Dis Colon Rectum. 1976;19(1):25–9.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Mann WJ. Surgical management of radiation enteropathy. Surg Clin North Am. 1991;71(5):977–90.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Eifel PJ, et al. Time course and incidence of late complications in patients treated with radiation therapy for FIGO stage IB carcinoma of the uterine cervix. Int J Radiat Oncol Biol Phys. 1995;32(5):1289–300.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Rotman M, et al. Prophylactic extended-field irradiation of para-aortic lymph nodes in stages IIB and bulky IB and IIA cervical carcinomas. Ten-year treatment results of RTOG 79-20. JAMA. 1995;274(5):387–93.CrossRefGoogle Scholar
  96. 96.
    Haie C, et al. Is prophylactic para-aortic irradiation worthwhile in the treatment of advanced cervical carcinoma? Results of a controlled clinical trial of the EORTC radiotherapy group. Radiother Oncol. 1988;11(2):101–12.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Small W Jr, et al. Extended-field irradiation and intracavitary brachytherapy combined with cisplatin chemotherapy for cervical cancer with positive para-aortic or high common iliac lymph nodes: results of ARM 1 of RTOG 0116. Int J Radiat Oncol Biol Phys. 2007;68(4):1081–7.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Chautems RC, et al. Formaldehyde application for haemorrhagic radiation-induced proctitis: a clinical and histological study. Color Dis. 2003;5(1):24–8.CrossRefGoogle Scholar
  99. 99.
    Roche B, Chautems R, Marti MC. Application of formaldehyde for treatment of hemorrhagic radiation-induced proctitis. World J Surg. 1996;20(8):1092–4; discussion 1094-5.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Gami B, et al. How patients manage gastrointestinal symptoms after pelvic radiotherapy. Aliment Pharmacol Ther. 2003;18(10):987–94.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Viswanathan AN, et al. Radiation dose-volume effects of the urinary bladder. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S116–22.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Marks LB, et al. The response of the urinary bladder, urethra, and ureter to radiation and chemotherapy. Int J Radiat Oncol Biol Phys. 1995;31(5):1257–80.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Viswanathan AN, et al. Complications of pelvic radiation in patients treated for gynecologic malignancies. Cancer. 2014;120(24):3870–83.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Nguyen TV, Petereit DG. High-dose-rate brachytherapy for medically inoperable stage I endometrial cancer. Gynecol Oncol. 1998;71(2):196–203.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    McIntyre JF, et al. Ureteral stricture as a late complication of radiotherapy for stage IB carcinoma of the uterine cervix. Cancer. 1995;75(3):836–43.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Shao Y, Lu GL, Shen ZJ. Comparison of intravesical hyaluronic acid instillation and hyperbaric oxygen in the treatment of radiation-induced hemorrhagic cystitis. BJU Int. 2012;109(5):691–4.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Hazewinkel MH, et al. Prophylactic vesical instillations with 0.2% chondroitin sulfate may reduce symptoms of acute radiation cystitis in patients undergoing radiotherapy for gynecological malignancies. Int Urogynecol J. 2011;22(6):725–30.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Smit SG, Heyns CF. Management of radiation cystitis. Nat Rev Urol. 2010;7(4):206–14.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Hughes LL, et al. Efficacy of radiotherapy for ovarian ablation: results of a breast intergroup study. Cancer. 2004;101(5):969–72.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Bese NS, et al. Ovarian ablation by radiation therapy: is it still an option for the ablation of ovarian function in endocrine responsive premenopausal breast cancer patients? Breast. 2009;18(5):304–8.PubMedCrossRefGoogle Scholar
  111. 111.
    Nath R, et al. Code of practice for brachytherapy physics: report of the AAPM Radiation Therapy Committee Task Group No. 56. American Association of Physicists in Medicine. Med Phys. 1997;24(10):1557–98.PubMedCrossRefGoogle Scholar
  112. 112.
    Kubo HD, et al. High dose-rate brachytherapy treatment delivery: report of the AAPM Radiation Therapy Committee Task Group No. 59. Med Phys. 1998;25(4):375–403.PubMedCrossRefGoogle Scholar
  113. 113.
    Henkin RE, et al. ACR-ASTRO practice guideline for the performance of therapy with unsealed radiopharmaceutical sources. Clin Nucl Med. 2011;36(8):e72–80.PubMedCrossRefGoogle Scholar
  114. 114.
    Batchelar DL, et al. Intraoperative ultrasound-based planning can effectively replace postoperative CT-based planning for high-dose-rate brachytherapy for prostate cancer. Brachytherapy. 2016;15(4):399–405.PubMedCrossRefGoogle Scholar
  115. 115.
    Damato AL, Viswanathan AN. Magnetic resonance-guided gynecologic brachytherapy. Magn Reson Imaging Clin N Am. 2015;23(4):633–42.PubMedCrossRefGoogle Scholar
  116. 116.
    Cormack RA. Quality assurance issues for computed tomography-, ultrasound-, and magnetic resonance imaging-guided brachytherapy. Int J Radiat Oncol Biol Phys. 2008;71(1 Suppl):S136–41.PubMedCrossRefGoogle Scholar
  117. 117.
    Hellebust TP, et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group: considerations and pitfalls in commissioning and applicator reconstruction in 3D image-based treatment planning of cervix cancer brachytherapy. Radiother Oncol. 2010;96(2):153–60.CrossRefGoogle Scholar
  118. 118.
    Damato AL, et al. Redesign of process map to increase efficiency: reducing procedure time in cervical cancer brachytherapy. Brachytherapy. 2015;14(4):471–80.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Wilkinson DA, Kolar MD. Failure modes and effects analysis applied to high-dose-rate brachytherapy treatment planning. Brachytherapy. 2013;12(4):382–6.PubMedCrossRefGoogle Scholar
  120. 120.
    Kapur T, et al. 3-T MR-guided brachytherapy for gynecologic malignancies. Magn Reson Imaging. 2012;30(9):1279–90.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Kharofa J, et al. 3-T MRI-based adaptive brachytherapy for cervix cancer: treatment technique and initial clinical outcomes. Brachytherapy. 2014;13(4):319–25.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Gill BS, et al. MRI-guided high-dose-rate intracavitary brachytherapy for treatment of cervical cancer: the University of Pittsburgh experience. Int J Radiat Oncol Biol Phys. 2015;91(3):540–7.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Damato AL, et al. A system to use electromagnetic tracking for the quality assurance of brachytherapy catheter digitization. Med Phys. 2014;41(10):101702.PubMedCrossRefGoogle Scholar
  124. 124.
    Wang W, et al. Evaluation of an active magnetic resonance tracking system for interstitial brachytherapy. Med Phys. 2015;42(12):7114–21.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Dise J, et al. Development and evaluation of an automatic interstitial catheter digitization tool for adaptive high-dose-rate brachytherapy. Brachytherapy. 2015;14(5):619–25.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Damato AL, et al. Independent brachytherapy plan verification software: improving efficacy and efficiency. Radiother Oncol. 2014;113(3):420–4.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Damato AL, Viswanathan AN, Cormack RA. Validation of mathematical models for the prediction of organs-at-risk dosimetric metrics in high-dose-rate gynecologic interstitial brachytherapy. Med Phys. 2013;40(10):101711.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Damato AL, Cormack RA, Viswanathan AN. Characterization of implant displacement and deformation in gynecologic interstitial brachytherapy. Brachytherapy. 2014;13(1):100–9.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Radiation OncologyUniversity of California Davis HealthSacramentoUSA
  2. 2.Department of Radiation OncologyUniversity of San Diego HealthSan DiegoUSA
  3. 3.Department of Radiation OncologyCedars-Sinai Medical CenterLos AngelesUSA
  4. 4.Department of Radiation OncologyUniversity of Pittsburgh Medical CenterPittsburghUSA
  5. 5.Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkUSA

Personalised recommendations