Intracavitary Brachytherapy: Definitive, Preoperative, and Adjuvant (Cervix, Uterine, and Vaginal)

Part of the Practical Guides in Radiation Oncology book series (PGRO)


Intracavitary brachytherapy for cervical, uterine, and vaginal cancers has evolved from a primarily 2D-based planning to a 3D image-based treatment modality over the course of the last few decades. The concordant modifications in target volume delineation are reviewed in the definitive, preoperative, and adjuvant settings, based on disease site.


  1. 1.
    Siegel RL, Miller KD, Jemal A. CA Cancer J Clin. 2017;67(1):7–30.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30. Scholar
  3. 3.
    Creutzberg CL. Portec. Surgery and postoperative radiotherapy versus surgery alone for patients with stage-1 endometrial carcinoma: multicentre randomised trial. Group Post Operative Radiation Therapy in Endometrial Carcinoma. Lancet. 2000;355(9213):1404–11.PubMedCrossRefGoogle Scholar
  4. 4.
    Klopp A. The role of postoperative radiation therapy for endometrial cancer: executive summary of an American Society for Radiation Oncology evidence-based guideline. Pract Radiat Oncol. 2014;4(3):137–44.PubMedCrossRefGoogle Scholar
  5. 5.
    Fisher CM. Pelvic radiation therapy for early endometrial cancer: careful selection is key. Oncology (Williston Park). 2013;27(10):999–1000.Google Scholar
  6. 6.
    Koh WJ. Uterine neoplasms, version 1.2014. J Natl Compr Canc Netw. 2014;12(2):248–80.PubMedCrossRefGoogle Scholar
  7. 7.
    Nout RA. Vaginal brachytherapy versus pelvic external beam radiotherapy for patients with endometrial cancer of high-intermediate risk (PORTEC-2): an open-label, non-inferiority, randomised trial. Lancet. 2010;375(9717):816–23.PubMedCrossRefGoogle Scholar
  8. 8.
    Small W Jr. American Brachytherapy Society consensus guidelines for adjuvant vaginal cuff brachytherapy after hysterectomy. Brachytherapy. 2012;11(1):58–67.PubMedCrossRefGoogle Scholar
  9. 9.
    Sorbe B, Straumits JA, Karlsson L. Intravaginal high dose rate brachytherapy for stage I endometrial cancer a randomized study of two dose per fraction levels. Int J Radiat Oncol Biol Phys. 2005;62(5):1385–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Weiss E. Adjuvant vaginal high-dose-rate afterloading alone in endometrial carcinoma: patterns of relapse and side effects following low-dose therapy. Gynecol Oncol. 1998;71(1):72–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Townamchai K, Viswanathan A, Lee L. A novel low dose fractionation regimen for adjuvant vaginal brachytherapy in early stage endometrioid endometrial cancer. Gynecol Oncol. 2012;127(2):351–5.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Sorbe B. External pelvic and vaginal irradiation versus vaginal irradiation alone as postoperative therapy in medium-risk endometrial carcinoma-a prospective randomized study. Int J Radiat Oncol Biol Phys. 2012;82(3):1249–55.PubMedCrossRefGoogle Scholar
  13. 13.
    Sorbe BG. External pelvic and vaginal irradiation versus vaginal irradiation alone as postoperative therapy in medium-risk endometrial carcinoma: a prospective, randomized study-quality-of-life analysis. Int J Gynecol Cancer. 2012;22(7):1281–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Schwarz JK, Beriwal S, Esthappan J, Erickson B, Feltmate C, Fyles A, et al. Consensus statement for brachytherapy for the treatment of medically inoperable endometrial cancer. Brachytherapy. 2015;14(5):587–99. Scholar
  15. 15.
    Weitmann HD, Potter R, Waldhausl C, Nechvile E, Kirisits C, Knocke TH. Pilot study in the treatment of endometrial carcinoma with 3D image-based high-dose-rate brachytherapy using modified Heyman packing: clinical experience and dose-volume histogram analysis. Int J Radiat Oncol Biol Phys. 2005;62(2):468–78. Scholar
  16. 16.
    Beriwal S, Kim H, Heron DE, Selvaraj R. Comparison of 2D vs. 3D dosimetry for Rotte ‘Y’ applicator high dose rate brachytherapy for medically inoperable endometrial cancer. Technol Cancer Res Treat. 2006;5(5):521–7. Scholar
  17. 17.
    Frank SJ. Definitive radiation therapy for squamous cell carcinoma of the vagina. Int J Radiat Oncol Biol Phys. 2005;62(1):138–47.PubMedCrossRefGoogle Scholar
  18. 18.
    Beriwal S. American Brachytherapy Society consensus guidelines for interstitial brachytherapy for vaginal cancer. Brachytherapy. 2012;11(1):68–75.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Kushner DM. High dose rate (192)Ir afterloading brachytherapy for cancer of the vagina. Br J Radiol. 2003;76(910):719–25.PubMedCrossRefGoogle Scholar
  20. 20.
    Tewari KS. Primary invasive carcinoma of the vagina: treatment with interstitial brachytherapy. Cancer p. 2001;91(4):758–70.CrossRefGoogle Scholar
  21. 21.
    Stock RG, Seski A, Chen AS. A 30 year experience in the management of primary carcinoma of the vagina analysis of prognostic factors and treatment modalities. Gynecol Oncol. 1995;56(1):45–52.PubMedCrossRefGoogle Scholar
  22. 22.
    Glaser SM, Beriwal JS. Brachytherapy for malignancies of the vagina in the 3D era. J Contemp Brachytherapy. 2015;7(4):312–8.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Glaser SM, Kim H, Beriwal S. Multichannel vaginal cylinder brachytherapy Impact of tumor thickness and location on dose to organs at risk. Brachytherapy. 2015;14(6):913–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Lindegaard JC, Madsen ML, Traberg A. Individualised 3D printed vaginal template for MRI guided brachytherapy in locally advanced cervical cancer. Radiother Oncol. 2016;118(1):173–5.PubMedCrossRefGoogle Scholar
  25. 25.
    Li Z, Liu C, Palta JR. Optimized dose distribution of a high dose rate vaginal cylinder. Int J Radiat Oncol Biol Phys. 1998;41:239–44.PubMedCrossRefGoogle Scholar
  26. 26.
    Kamrava M, Beriwal S, Erickson B. American Brachytherapy Society recurrent carcinoma of the endometrium task force patterns of care and review of the literature. Brachytherapy. 2017;16:1129.PubMedCrossRefGoogle Scholar
  27. 27.
    Owrangi AM, Jolly S, Balter JM. Clinical implementation of MR-guided vaginal cylinder brachytherapy. J Appl Clin Med Phys. 2015;16(6):490–500.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Nath R, Anderson LL, Meli JA. AAPM. Code of practice for brachytherapy physics: report of the Therapy Committee Task Group No. 56. Med Phys. 1997;24:1557–98.PubMedCrossRefGoogle Scholar
  29. 29.
    Kubo HD, Glasgow GP, Pethel TD. AAPM. High dose-rate brachytherapy treatment delivery: a report of the Therapy Committee Task Group No. 59. Med Phys. 1998;25:375–403.PubMedCrossRefGoogle Scholar
  30. 30.
    Nath R, Rivard MJ, DeWerd LA. Guidelines by the AAPM and GEC-ESTRO on the use of innovative brachytherapy devices and applications: report of Task Group 167. Med Phys. 2016;43(6):3178–205.PubMedCrossRefGoogle Scholar
  31. 31.
    Huq MS, Fraass BA, Dunscombe PB. The report of Task Group 100 of the AAPM: application of risk analysis methods to radiation therapy quality management. Med Phys. 2016;43(7):4209–62.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Landoni F, Colombo A, Milani R, Placa F, Zanagnolo V, Mangioni C, et al. Randomized study between radical surgery and radiotherapy for the treatment of stage IB-IIA cervical cancer: 20-year update. J Gynecol Oncol. 2017;28(3):e34. Scholar
  33. 33.
    Small W Jr, Strauss JB, Jhingran A, Yashar CM, Cardenes HR, Erickson-Wittmann BA, et al. ACR Appropriateness Criteria (R) definitive therapy for early-stage cervical cancer. Am J Clin Oncol. 2012;35(4):399–405. Scholar
  34. 34.
    Viswanathan AN, Beriwal S, De Los Santos JF, Demanes DJ, Gaffney D, Hansen J, et al. American Brachytherapy Society consensus guidelines for locally advanced carcinoma of the cervix. Part II: high-dose-rate brachytherapy. Brachytherapy. 2012;11(1):47–52. Scholar
  35. 35.
    Song S, et al. The effect of treatment time in locally advanced cervical cancer in the era of concurrent chemoradiotherapy. Cancer. 2012;119(2):325.PubMedCrossRefGoogle Scholar
  36. 36.
    Petereit DG, et al. The adverse effect of treatment prolongation in cervical carcinoma. Int Oncol Biol Phys Jul 30. 1995;32(5):1301–7.Google Scholar
  37. 37.
    Perez CA, et al. Carcinoma of the uterine cervix. I. Impact of prolongation of overall treatment time and timing of brachytherapy on outcome of radiation therapy. Int J Radiat Oncol Biol Phys. 1995;32(5):1275–88.PubMedCrossRefGoogle Scholar
  38. 38.
    Chen SW, et al. The adverse effect of treatment prolongation in cervical cancer by high-dose-rate intracavitary brachytherapy. Radiother Oncol. 2003;67(1):69–76.PubMedCrossRefGoogle Scholar
  39. 39.
    Prescribing, recording, and reporting brachytherapy for cancer of the cervix. J ICRU. 2013;13(1-2):NP.
  40. 40.
    Charra-Brunaud V, Harter M, Delannes C. Impact of 3D image-based PDR brachytherapy on outcome of patients treated for cervix carcinoma in France: results of the national STIC prospective study. Radiother Oncol. 2012;103:305–13.PubMedCrossRefGoogle Scholar
  41. 41.
    Fellner C, Pötter R, Knocke TH. Comparison of radiograph and computed tomography based treatment planning in cervix cancer in brachytherapy with specific attention to some quality assurance aspects. Radiother Oncol. 2001;58:53–62.PubMedCrossRefGoogle Scholar
  42. 42.
    Cho LP, Manuel M, Catalano P, Lee L, Damato AL, Cormack RA, O’Farrell D, et al. Outcomes with volume-based dose specification in CT-planned high-dose-rate brachytherapy for stage I-II cervical carcinoma: a 10-year institutional experience. Gynecol Oncol. 2016;143(3):545–51.PubMedCrossRefGoogle Scholar
  43. 43.
    Kim RY, Shen S, Duan J. Image-based three-dimensional treatment planning of intracavitary brachytherapy for cancer of the cervix: dose-volume histograms of the bladder, rectum, sigmoid colon, and small bowel. Brachytherapy. 2007;6(3):187–94.PubMedCrossRefGoogle Scholar
  44. 44.
    Onal C, Arslan G, Topkan E, Pehlivan B, Yavuz M, Oymak E, et al. Comparison of conventional and CT-based planning for intracavitary brachytherapy for cervical cancer: target volume coverage and organs at risk doses. J Exp Clin Cancer Res. 2009;28:95.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Suneja G, Brown D, Chang A, Erickson B, Fidarova E, Grover S, et al. American Brachytherapy Society: brachytherapy treatment recommendations for locally advanced cervix cancer for low-income and middle-income countries. Brachytherapy. 2017;16(1):85–94. Scholar
  46. 46.
    Haie-Meder C, Pötter R, Van Limbergen E, Gynaecological (GYN) GEC-ESTRO Working Group. Recommendations from Gynaecological (GYN) (I): concepts and terms in 3D image-based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV. Radiother Oncol. 2005;74:235–45.PubMedCrossRefGoogle Scholar
  47. 47.
    Hegazy N, Kirisits C, Berger D, Federico M, Sturdza A, Nesvacil N, Pötter R. High-risk clinical target volume delineation in CT-guided cervical cancer brachytherapy: impact of information from FIGO stage with or without systematic inclusion of 3D documentation of clinical gynecological examination. Acta Oncol. 2013;52(7):1345–52.PubMedCrossRefGoogle Scholar
  48. 48.
    Wang F, Tang Q, Lv G. Comparison of computed tomography and magnetic resonance imaging in cervical cancer brachytherapy: a systematic review. Brachytherapy. 2017;16(2):353–65.PubMedCrossRefGoogle Scholar
  49. 49.
    Swanick CW, Castle KO, Vedam S, Munsell MF, Turner LM, Rauch GM, et al. Comparison of computed tomography-and magnetic resonance imaging-based clinical target volume contours at brachytherapy for cervical cancer. Int J Radiat Oncol Biol Phys. 2016;96(4):793–800.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Eskander RN, Scanderbeg D, Saenz CC, Brown M, Yashar C. Comparison of computed tomography and magnetic resonance imaging in cervical cancer brachytherapy target and normal tissue contouring. Int J Gynecol Cancer. 2010;20(1):47–53.PubMedCrossRefGoogle Scholar
  51. 51.
    Viswanathan AN. Comparison and consensus guidelines for delineation of clinical target volume for CT-and MR-based brachytherapy in locally advanced cervical cancer. Int J Radiat Oncol Biol Phys. 2014;90(2):320–8.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Dolezel M, Odrazka K, Zizka J, Vanasek J, Kohlova T, Kroulik T, et al. MRI-based preplanning using CT and MRI data fusion in patients with cervical cancer treated with 3D-based brachytherapy: feasibility and accuracy study. Int J Radiat Oncol Biol Phys. 2012;84(1):146–52.PubMedCrossRefGoogle Scholar
  53. 53.
    Harmon G, Diak A, Shea SM, Yacoub JH, Harkenrider MM, Point A, et al. Small vs. HRCTV D90 in MRI based cervical brachytherapy of small and large lesions. Brachytherapy. 2016;15(6):825–31.PubMedCrossRefGoogle Scholar
  54. 54.
    Rijkmans EC, Nout RA, Rutten IH, Ketelaars M, Neelis KJ, Laman MS, et al. Improved survival of patients with cervical cancer treated with image-guided brachytherapy compared with conventional brachytherapy. Gynecol Oncol. 2014;135(2):231–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Haie-Meder C, Van Limbergen E, Barillot I, De Brabandere M, Dimopoulos J, Dumas I, Pötter R, et al. Recommendations from gynaecological (GYN) GEC ESTRO working group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology. Radiother Oncol. 2006;78(1):67–77.PubMedCrossRefGoogle Scholar
  56. 56.
    Report 89. J ICRU. 2013;13(1-2):NP.
  57. 57.
    Schernberg A, Balleyguier C, Dumas I, Gouy S, Escande A, Bentivegna E, et al. Diffusion-weighted MRI in image-guided adaptive brachytherapy: tumor delineation feasibility study and comparison with GEC-ESTRO guidelines. Brachytherapy. 2017;16:956.PubMedCrossRefGoogle Scholar
  58. 58.
    Gladwish A, Milosevic M, Fyles A, Xie J, Halankar J, Metser U, et al. Association of apparent diffusion coefficient with disease recurrence in patients with locally advanced cervical cancer treated with radical chemotherapy and radiation therapy. Radiology. 2015;279(1):158–66. Scholar
  59. 59.
    Olsen JR, Esthappan J, DeWees T, Narra VR, Dehdashti F, Siegel BA, et al. Tumor volume and sub-volume concordance between FDGPET/CT and for squamous cell carcinoma of the cervix. J Magn Reson Imaging. 2013;37(2):431–4. Scholar
  60. 60.
    Dyk P, Jiang N, Sun B, DeWees TA, Fowler KJ, Narra V, et al. Cervical gross tumor volume dose predicts local control using magnetic resonance imaging/diffusion-weighted imaging-guided high-dose-rate and positron emission tomography/computed tomography-guided intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2014;90(4):794–801. Scholar
  61. 61.
    Han K, Croke J, Foltz W, Metser U, Xie J, Shek T, Ménard C, et al. A prospective study of DWI, DCE-MRI and FDG PET imaging for target delineation in brachytherapy for cervical cancer. Radiother Oncol. 2016;120(3):519–25. Scholar
  62. 62.
    Narayan K, van Dyk S, Bernshaw D, Khaw P, Mileshkin L, Kondalsamy-Chennakesavan S, et al. Ultrasound guided conformal brachytherapy of cervix cancer: survival, patterns of failure, and late complications. J Gynecol Oncol. 2014;25(3):206–13. Scholar
  63. 63.
    van Dyk S, Schneider M, Kondalsamy-Chennakesavan S, Bernshaw D, Narayan K. Ultrasound use in gynecologic brachytherapy: time to focus the beam. Brachytherapy. 2014;14(3):390–400. Scholar
  64. 64.
    Van Dyk S, Narayan K, Fisher R, Bernshaw D. Conformal brachytherapy planning for cervical cancer using transabdominal ultrasound. Int J Radiat Oncol Biol Phys. 2009;75:64–70.PubMedCrossRefGoogle Scholar
  65. 65.
    van Dyk S, Kondalsamy-Chennakesavan S, Schneider M, Bernshaw D, Narayan K. Comparison of measurements of the uterus and cervix obtained by magnetic resonance and transabdominal ultrasound imaging to identify the brachytherapy target in patients with cervix cancer. Int J Radiat Oncol Biol Phys. 2013;88(4):860–5. Scholar
  66. 66.
    van Dyk S, Kondalsamy-Chennakesavan S, Schneider M, Bernshaw D, Narayan K. Assessing changes to the brachytherapy target for cervical cancer using a single MRI and serial ultrasound. Brachytherapy. 2015;14(6):889–97. Scholar
  67. 67.
    Nakao Y, Hashiguchi M, Nishiyama S, Aihara S, Iwasaka T, Yokoyama M, et al. Preoperative chemoradiotherapy in locally advanced bulky squamous cell carcinoma of the uterine cervix. Int J Gynecol Cancer. 2017;27:1943. Scholar
  68. 68.
    Huguet F, Cojocariu OM, Levy P, Lefranc JP, Darai E, Jannet D, et al. Preoperative concurrent radiation therapy and chemotherapy for bulky stage IB2, IIA, and IIB carcinoma of the uterine cervix with proximal parametrial invasion. Int J Radiat Oncol Biol Phys. 2008;72(5):1508–15. Scholar
  69. 69.
    Perez CA, Camel HM, Kao MS, Hederman MA. Randomized study of preoperative radiation and surgery or irradiation alone in the treatment of stage IB and IIA carcinoma of the uterine cervix: final report. Gynecol Oncol. 1987;27(2):129–40.PubMedCrossRefGoogle Scholar
  70. 70.
    Corn BW, Hanlon AL, Pajak TF. Technically accurate intracavitary insertions improve pelvic control and survival among patients with locally advanced carcinoma of the uterine cervix. Gynecol Oncol. 1994;53:294–300.PubMedCrossRefGoogle Scholar
  71. 71.
    Davidson MT, Yuen J, D’Souza DP. Optimization of high-dose-rate cervix brachytherapy applicator placement: the benefits of intraoperative ultrasound guidance. Brachytherapy. 2008;7:248–53.PubMedCrossRefGoogle Scholar
  72. 72.
    Vojtisek R, Mouryc F, Cechova D, Ciprova R, Ferda J, Finek J. MRI based 3D brachytherapy planning of the cervical cancer - our experiences with the use of the uterovaginal Vienna Ring MR CT applicator. Klin Onkol. 2014;27(1):45–51.PubMedCrossRefGoogle Scholar
  73. 73.
    Dimopoulos JC, Kirisits C, Petric P, Georg P, Lang S, Berger D, et al. The Vienna applicator for combined intracavitary and interstitial brachytherapy of cervical cancer: clinical feasibility and preliminary results. Int J Radiat Oncol Biol Phys. 2006;66(1):83–90. Scholar
  74. 74.
    Kirisits C, Lang S, Dimopoulos J, Berger D, Georg D, Potter R. The Vienna applicator for combined intracavitary and interstitial brachytherapy of cervical cancer: design, application, treatment planning, and dosimetric results. Int J Radiat Oncol Biol Phys. 2006;65(2):624–30. Scholar
  75. 75.
    Nomden CN, de Leeuw AAC, Moerland MA, Roesink JM, Tersteeg RJHA, Jürgenliemk-Schulz IM. Clinical use of the Utrecht applicator for combined intracavitary/interstitial brachytherapy treatment in locally advanced cervical cancer. Int J Radiat Oncol Biol Phys. 2012;82(4):1424–30. Scholar
  76. 76.
    Jürgenliemk-Schulz IM, Tersteeg RJHA, Roesink JM, Bijmolt S, Nomden CN, Moerland MA, et al. MRI-guided treatment-planning optimisation in intracavitary or combined intracavitary/interstitial PDR brachytherapy using tandem ovoid applicators in locally advanced cervical cancer. Radiother Oncol. 2009;93(2):322–30. Scholar
  77. 77.
    Yoshio K, Murakami N, Morota M, Harada K, Kitaguchi M, Yamagishi K, et al. Inverse planning for combination of intracavitary and interstitial brachytherapy for locally advanced cervical cancer. J Radiat Res. 2013;54(6):1146–52. Scholar
  78. 78.
    Fokdal L, Sturdza A, Mazeron R, Haie-Meder C, Tan LT, Gillham C, et al. Image guided adaptive brachytherapy with combined intracavitary and interstitial technique improves the therapeutic ratio in locally advanced cervical cancer: analysis from the retroEMBRACE study. Radiother Oncol. 2016;120(3):434–40. Scholar
  79. 79.
    Viswanathan AN, Beriwal S, De Los Santos J, Demanes DJ, Gaffney D, Hansen J, et al. The American Brachytherapy Society treatment recommendations for locally advanced carcinoma of the cervix part II: high dose-rate brachytherapy. Brachytherapy. 2012;11(1):47–52. Scholar
  80. 80.
    Liu Z-S, Guo J, Lin X, Wang H-Y, Qiu L, Ren X-J, et al. Clinical feasibility of interstitial brachytherapy using a “hybrid” applicator combining uterine tandem and interstitial metal needles based on CT for locally advanced cervical cancer. Brachytherapy. 2016;15(5):562–9. Scholar
  81. 81.
    Horne ZD, Kim H, Beriwal S. Feasibility and early results with a hybrid intracavitary/interstitial applicator for locally advanced cervical cancers with poor response to chemoradiotherapy. Brachytherapy. 2016;15:S118–S9. Scholar
  82. 82.
    Fokdal L, Tanderup K, Hokland SB, Røhl L, Pedersen EM, Nielsen SK, et al. Clinical feasibility of combined intracavitary/interstitial brachytherapy in locally advanced cervical cancer employing MRI with a tandem/ring applicator in situ and virtual preplanning of the interstitial component. Radiother Oncol. 2013;107(1):63–8. Scholar
  83. 83.
    Han DY, Webster MJ, Scanderbeg DJ. Direction-modulated brachytherapy for high-dose-rate treatment of cervical cancer I: theoretical design. Int J Radiat Oncol Biol Phys. 2014;89(3):666–73.PubMedCrossRefGoogle Scholar
  84. 84.
    Han DY, Safigholi H, Soliman A. Direction modulated brachytherapy for treatment of cervical cancer II: comparative planning study with intracavitary and intracavitary-interstitial techniques. Int J Radiat Oncol Biol Phys. 2016;96(2):440–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Soliman AS, Elzibak A, Easton H. Quantitative MRI assessment of a novel direction modulated brachytherapy tandem applicator for cervical cancer at 1.5T. Radiother Oncol. 2016;120:500–6.PubMedCrossRefGoogle Scholar
  86. 86.
    Price MJ, Jackson EF, Gifford KA. Development of prototype shielded cervical intracavitary brachytherapy applicators compatible with CT and MR imaging. Med Phys. 2009;36(12):5515–24.PubMedCrossRefGoogle Scholar
  87. 87.
    Damato AL, Kassick M, Viswanathan AN. Rectum and bladder spacing in cervical cancer brachytherapy using a novel injectable hydrogel compound. Brachytherapy. 2017;16:949.PubMedCrossRefGoogle Scholar
  88. 88.
    Owrangi AM, Prisciandaro JI, Soliman AS. Magnetic resonance imaging-guided brachytherapy for cervical cancer: initiating a program. J Contemp Brachytherapy. 2015;7(5):417–22.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Kim Y, Muruganandham M, Modrick JM. Evaluation of artifacts and distortions of titanium applicators on 3.0 Tesla MRI: feasibility of titanium applicators in MRI-guided brachytherapy for gynecological cancer. Int J Radiat Oncol Biol Phys. 2011;80:947–55.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Haack S, Nielsen SK, Lindegaard JC. Applicator reconstruction in MRI 3D image-based dose planning of brachytherapy for cervical cancer. Radiother Oncol. 2009;91:187–93.PubMedCrossRefGoogle Scholar
  91. 91.
    Damato AL, Viswanathan AN. Magnetic resonance-guided gynecologic brachytherapy. Magn Reson Imaging Clin N Am. 2015;23:633–42.PubMedCrossRefGoogle Scholar
  92. 92.
    Boutaleb S, Racine E, Fillion O. Performance and suitability assessment of a real-time 3D electromagnetic needle tracking system for interstitial brachytherapy. J Contemp Brachytherapy. 2015;7(4):280–9.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Damato AL, Viswanathan AN, Don SM. A system to use electromagnetic tracking for the quality assurance of brachytherapy catheter digitization. Med Phys. 2014;41:101702.PubMedCrossRefGoogle Scholar
  94. 94.
    Wang W, Dumoulin CL, Viswanathan AN. Real-time active MR-tracking of metallic stylets in MR-guided radiation therapy. Magn Reson Med. 2015;73:1803–11.PubMedCrossRefGoogle Scholar
  95. 95.
    Wang W, Viswanathan AN, Damato AL. Evaluation of an active magnetic resonance tracking system for interstitial brachytherapy. Med Phys. 2015;42:7114–21.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    de Arcos J, Schmidt EJ, Wang W. Prospective clinical implementation of a novel magnetic resonance tracking device for real-time brachytherapy catheter positioning. Int J Radiat Oncol Biol Phys. 2017;99(3):618–26.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Viswanathan AN, Beriwal S, De Los Santos JF. American Brachytherapy Society consensus guidelines for locally advanced carcinoma of the cervix. Part II: highdoserate brachytherapy. Brachytherapy. 2012;11:47–52.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    ICRU. International Commission on Radiation Units and Measurements (ICRU). Prescribing, recording, and reporting brachytherapy for cancer of the cervix. ICRU Report 89. New York. 2016.Google Scholar
  99. 99.
    Bert C, Kellermeier M, Tanderup K. Electromagnetic tracking for treatment verification in interstitial brachytherapy. J Contemp Brachytherapy. 2016;8:448–53.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Johansen JG, Rylander S, Buus S. Time-resolved in vivo dosimetry for source tracking in brachytherapy. Brachytherapy. 2018;17:122.PubMedCrossRefGoogle Scholar
  101. 101.
    Dimopoulos JCA, Petrow P, Tanderup K. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (IV): basic principles and parameters for MR imaging within the frame of image based adaptive cervix cancer brachytherapy. Radiother Oncol. 2012;103:113–22.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Radiation and Cellular OncologyUniversity of Chicago Medical CenterChicagoUSA
  2. 2.Department of Radiation OncologyVirginia Commonwealth UniversityRichmondUSA
  3. 3.Department of Radiation OncologyUniversity of Colorado HospitalBoulderUSA

Personalised recommendations