Intensity-Modulated Radiation Therapy and Volumetric-Modulated Arc Therapy

Part of the Practical Guides in Radiation Oncology book series (PGRO)


Due to its dosimetric superiority relative to traditional techniques, intensity-modulated radiation therapy (IMRT) has become increasingly common in the management of gynecologic malignancies. The increased conformality of the dose distribution delivered via IMRT permits the delivery of an effective dose to irregularly shaped targets while simultaneously sparing nearby organs-at-risk. Volumetric-modulated arc therapy (VMAT) is a related technique that can achieve similar dose distributions with shorter delivery times. In gynecologic malignancies, IMRT conveys benefits including improved dosimetry to the intestines, bladder, and bone marrow, dose escalation to gross disease, and the potential to extend treatment volumes into the para-aortic region. The benefits of IMRT presuppose great care in the development and execution of an institutional IMRT program involving physicians, physicists, and dosimetrists working effectively together. This chapter explores IMRT-specific considerations in contouring, management of motion, plan evaluation, and quality assurance in order to assist management of endometrial, vulvar, vaginal, and cervical cancers in both postsurgical and intact settings.


Intensity-modulated radiation therapy IMRT Gynecologic malignancies Cervical cancer Endometrial cancer Vulvar cancer Vaginal cancer Treatment planning DVH Dosimetry 


  1. 1.
    Brahme A, Roos JE, Lax I. Solution of an integral equation encountered in rotation therapy. Phys Med Biol. 1982;27(10):1221–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Brahme A. Optimization of stationary and moving beam radiation therapy techniques. Radiother Oncol. 1988;12(2):129–40.PubMedCrossRefGoogle Scholar
  3. 3.
    Bortfeld T. IMRT: a review and preview. Phys Med Biol. 2006;51(13):R363–79.PubMedCrossRefGoogle Scholar
  4. 4.
    Roeske JC, Lujan A, Rotmensch J, Waggoner SE, Yamada D, Mundt AJ. Intensity-modulated whole pelvic radiation therapy in patients with gynecologic malignancies. Int J Radiat Oncol Biol Phys. 2000;48(5):1613–21.PubMedCrossRefGoogle Scholar
  5. 5.
    Jhingran A, Salehpour M, Sam M, Levy L, Eifel PJ. Vaginal motion and bladder and rectal volumes during pelvic intensity-modulated radiation therapy after hysterectomy. Int J Radiat Oncol Biol Phys. 2012;82(1):256–62.PubMedCrossRefGoogle Scholar
  6. 6.
    Liang Y, Bydder M, Yashar CM, Rose BS, Cornell M, Hoh CK, et al. Prospective study of functional bone marrow-sparing intensity modulated radiation therapy with concurrent chemotherapy for pelvic malignancies. Int J Radiat Oncol Biol Phys. 2013;85(2):406–14.PubMedCrossRefGoogle Scholar
  7. 7.
    Osborn V, Schwartz D, Lee YC, Lee A, Garay E, Choi K, et al. Patterns of care of IMRT usage in postoperative management of uterine cancer. Gynecol Oncol. 2017;144(1):130–5.PubMedCrossRefGoogle Scholar
  8. 8.
    Rao M, Cao D, Chen F, Ye J, Mehta V, Wong T, et al. Comparison of anatomy-based, fluence-based and aperture-based treatment planning approaches for VMAT. Phys Med Biol. 2010;55(21):6475–90.PubMedCrossRefGoogle Scholar
  9. 9.
    Guy JB, Falk AT, Auberdiac P, Cartier L, Vallard A, Ollier E, et al. Dosimetric study of volumetric arc modulation with RapidArc and intensity-modulated radiotherapy in patients with cervical cancer and comparison with 3-dimensional conformal technique for definitive radiotherapy in patients with cervical cancer. Med Dosim. 2016;41(1):9–14.PubMedCrossRefGoogle Scholar
  10. 10.
    Jia X, Ziegenhein P, Jiang SB. GPU-based high-performance computing for radiation therapy. Phys Med Biol. 2014;59(4):R151.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Craft DL, Halabi TF, Shih HA, Bortfeld TR. Approximating convex Pareto surfaces in multiobjective radiotherapy planning. Med Phys. 2006;33(9):3399–407.PubMedCrossRefGoogle Scholar
  12. 12.
    Craft D, Halabi T, Shih HA, Bortfeld T. An approach for practical multiobjective IMRT treatment planning. Int J Radiat Oncol Biol Phys. 2007;69(5):1600–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Kierkels RG, Visser R, Bijl HP, Langendijk JA, van ‘t Veld AA, Steenbakkers RJ, et al. Multicriteria optimization enables less experienced planners to efficiently produce high quality treatment plans in head and neck cancer radiotherapy. Radiat Oncol. 2015;10(1):87.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Nwankwo O, Mekdash H, Sihono DSK, Wenz F, Glatting G. Knowledge-based radiation therapy (KBRT) treatment planning versus planning by experts: validation of a KBRT algorithm for prostate cancer treatment planning. Radiat Oncol. 2015;10(1):111.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Klein EE, Hanley J, Bayouth J, Yin F-F, Simon W, Dresser S, et al. Task Group 142 report: quality assurance of medical accelerators. Med Phys. 2009;36(9):4197–212.PubMedCrossRefGoogle Scholar
  16. 16.
    Galvin JM, Ezzell G, Eisbrauch A, Yu C, Butler B, Xiao Y, et al. Implementing IMRT in clinical practice: a joint document of the American Society for Therapeutic Radiology and Oncology and the American Association of Physicists in Medicine. Int J Radiat Oncol Biol Phys. 2004;58(5):1616–34.PubMedCrossRefGoogle Scholar
  17. 17.
    Lim K, Small W Jr, Portelance L, Creutzberg C, Jurgenliemk-Schulz IM, Mundt A, et al. Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy for the definitive treatment of cervix cancer. Int J Radiat Oncol Biol Phys. 2011;79(2):348–55.CrossRefGoogle Scholar
  18. 18.
    Mell LK, Sirak I, Wei L, Tarnawski R, Mahantshetty U, Yashar CM, et al. Bone marrow-sparing intensity modulated radiation therapy with concurrent cisplatin for stage IB-IVA cervical cancer: an international multicenter phase ii clinical trial (INTERTECC-2). Int J Radiat Oncol Biol Phys. 2017;97(3):536–45.PubMedCrossRefGoogle Scholar
  19. 19.
    Jadon R, Pembroke CA, Hanna CL, Palaniappan N, Evans M, Cleves AE, et al. A systematic review of organ motion and image-guided strategies in external beam radiotherapy for cervical cancer. Clin Oncol (R Coll Radiol). 2014;26(4):185–96.CrossRefGoogle Scholar
  20. 20.
    Kidd EA, Siegel BA, Dehdashti F, Rader JS, Mutic S, Mutch DG, et al. Clinical outcomes of definitive intensity-modulated radiation therapy with fluorodeoxyglucose-positron emission tomography simulation in patients with locally advanced cervical cancer. Int J Radiat Oncol Biol Phys. 2010;77(4):1085–91.PubMedCrossRefGoogle Scholar
  21. 21.
    Gill BS, Lin JF, Krivak TC, Sukumvanich P, Laskey RA, Ross MS, et al. National Cancer Data Base analysis of radiation therapy consolidation modality for cervical cancer: the impact of new technological advancements. Int J Radiat Oncol Biol Phys. 2014;90(5):1083–90.PubMedCrossRefGoogle Scholar
  22. 22.
    Han K, Milosevic M, Fyles A, Pintilie M, Viswanathan AN. Trends in the utilization of brachytherapy in cervical cancer in the United States. Int J Radiat Oncol Biol Phys. 2013;87(1):111–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Georg D, Kirisits C, Hillbrand M, Dimopoulos J, Potter R. Image-guided radiotherapy for cervix cancer: high-tech external beam therapy versus high-tech brachytherapy. Int J Radiat Oncol Biol Phys. 2008;71(4):1272–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Peters WA 3rd, Liu PY, Barrett RJ 2nd, Stock RJ, Monk BJ, Berek JS, et al. Concurrent chemotherapy and pelvic radiation therapy compared with pelvic radiation therapy alone as adjuvant therapy after radical surgery in high-risk early-stage cancer of the cervix. J Clin Oncol. 2000;18(8):1606–13.PubMedCrossRefGoogle Scholar
  25. 25.
    Shirvani SM, Klopp AH, Likhacheva A, Jhingran A, Soliman PT, Lu KH, et al. Intensity modulated radiation therapy for definitive treatment of para-aortic relapse in patients with endometrial cancer. Pract Radiat Oncol. 2013;3(1):e21–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Osborne EM, Klopp AH, Jhingran A, Meyer LA, Eifel PJ. Impact of treatment year on survival and adverse effects in patients with cervical cancer and paraortic lymph node metastases treated with definitive extended-field radiation therapy. Pract Radiat Oncol. 2017;7:e165.PubMedCrossRefGoogle Scholar
  27. 27.
    Verma J, Sulman EP, Jhingran A, Tucker SL, Rauch GM, Eifel PJ, et al. Dosimetric predictors of duodenal toxicity after intensity modulated radiation therapy for treatment of the para-aortic nodes in gynecologic cancer. Int J Radiat Oncol Biol Phys. 2014;88(2):357–62.CrossRefGoogle Scholar
  28. 28.
    Kelly P, Das P, Pinnix CC, Beddar S, Briere T, Pham M, et al. Duodenal toxicity after fractionated chemoradiation for unresectable pancreatic cancer. Int J Radiat Oncol Biol Phys. 2013;85(3):e143–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Takiar V, Fontanilla HP, Eifel PJ, Jhingran A, Kelly P, Iyer RB, et al. Anatomic distribution of fluorodeoxyglucose-avid para-aortic lymph nodes in patients with cervical cancer. Int J Radiat Oncol Biol Phys. 2013;85(4):1045–50.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Kabolizadeh P, Fulay S, Beriwal S. Are Radiation Therapy Oncology Group para-aortic contouring guidelines for pancreatic neoplasm applicable to other malignancies—assessment of nodal distribution in gynecological malignancies. Int J Radiat Oncol Biol Phys. 2013;87(1):106–10.PubMedCrossRefGoogle Scholar
  31. 31.
    Baden C, Whitley A, López-Araujo J, Popple R, Duan J, Kim R. A novel dynamic field-matching technique for treatment of patients with para-aortic node-positive cervical cancer: clinical experience. Rep Pract Oncol Radiother. 2016;21(1):37–41.PubMedCrossRefGoogle Scholar
  32. 32.
    Jhingran A, Winter K, Portelance L, Miller B, Salehpour M, Gaur R, et al. A phase II study of intensity modulated radiation therapy to the pelvis for postoperative patients with endometrial carcinoma: radiation therapy oncology group trial 0418. Int J Radiat Oncol Biol Phys. 2012;84(1):e23–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Cancer AJCo. AJCC staging manual, 7th ed. In: Edge S, Bryd D, Compton CC, Fritz AG, Greene FL, Trotti A, editors. New York: Springer; 2011.Google Scholar
  34. 34.
    Gaffney DK, King B, Viswanathan AN, Barkati M, Beriwal S, Eifel P, et al. Consensus recommendations for radiation therapy contouring and treatment of vulvar carcinoma. Int J Radiat Oncol Biol Phys. 2016;95(4):1191–200.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Moore DH, Ali S, Koh WJ, Michael H, Barnes MN, McCourt CK, et al. A phase II trial of radiation therapy and weekly cisplatin chemotherapy for the treatment of locally-advanced squamous cell carcinoma of the vulva: a Gynecologic Oncology Group study. Gynecol Oncol. 2012;124(3):529–33.CrossRefGoogle Scholar
  36. 36.
    Beriwal S, Heron DE, Kim H, King G, Shogan J, Bahri S, et al. Intensity-modulated radiotherapy for the treatment of vulvar carcinoma: a comparative dosimetric study with early clinical outcome. Int J Radiat Oncol Biol Phys. 2006;64(5):1395–400.PubMedCrossRefGoogle Scholar
  37. 37.
    Beriwal S, Coon D, Heron DE, Kelley JL, Edwards RP, Sukumvanich P, et al. Preoperative intensity-modulated radiotherapy and chemotherapy for locally advanced vulvar carcinoma. Gynecol Oncol. 2008;109(2):291–5.PubMedCrossRefGoogle Scholar
  38. 38.
    Beriwal S, Shukla G, Shinde A, Heron DE, Kelley JL, Edwards RP, et al. Preoperative intensity modulated radiation therapy and chemotherapy for locally advanced vulvar carcinoma: analysis of pattern of relapse. Int J Radiat Oncol Biol Phys. 2013;85(5):1269–74.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Network NCC. NCCN guidelines version 1.2017 vulvar cancer (squamous cell carcinoma). 2017.
  40. 40.
    Group GO. A phase II trial evaluation cisplatin (NSC #119875) and gemcitabine (NSC #613327) concurrent with intensity-modulated radiation therapy (IMRT) in the treatment of locally advanced squamous cell carcinoma of the vulva. NCI Protocol #: GOG-0279; 2016. p. 1–55.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Radiation OncologyUniversity of Alabama at BirminghamBirminghamUSA
  2. 2.Department of Radiation OncologyThe University of Texas Southwestern Medical CenterDallasUSA
  3. 3.Department of Radiation OncologyStanford Comprehensive Cancer CenterStanfordUSA
  4. 4.Department of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations