Skip to main content

3D Planning

  • Chapter
  • First Online:
  • 1268 Accesses

Part of the book series: Practical Guides in Radiation Oncology ((PGRO))

Abstract

Three-dimensional treatment planning is a critical technique for the treatment of many gynecologic malignancies. It can provide comprehensive coverage of clinical targets of radiotherapy while sparing normal tissues within expected tolerance doses. It is potentially less sensitive to organ motion and less expensive than intensity-modulated radiation therapy or volumetric modulated arc therapy. This chapter described the indications, simulation, and planning techniques associated with treatment of the pelvis, para-aortic volumes, and inguinal nodal basins.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Goitein M, Abrams M. Multi-dimensional treatment planning: I. Delineation of anatomy. Int J Radiat Oncol Biol Phys. 1983;9:777–87.

    Article  CAS  Google Scholar 

  2. Chen LA, Kim J, Boucher K, et al. Toxicity and cost-effectiveness analysis of intensity modulated radiation therapy versus 3-dimensional conformal radiation therapy for postoperative treatment of gynecologic cancers. Gynecol Oncol. 2015;136:521–8.

    Article  Google Scholar 

  3. Pearcey R, Brundage M, Drouin P, et al. Phase III trial comparing radical radiotherapy with and without cisplatin chemotherapy in patients with advanced squamous cell cancer of the cervix. J Clin Oncol. 2002;20:966–72.

    Article  CAS  Google Scholar 

  4. Klopp AH, Yeung AR, Deshmukh S, et al. A phase III randomized trial comparing patient-reported toxicity and quality of life (QOL) during pelvic intensity modulated radiation therapy as compared to conventional radiation therapy. Int J Radiat Oncol Biol Phys. 2016;96:S3.

    Article  Google Scholar 

  5. Taylor A, Rockall AG, Reznek RH, Powell ME. Mapping pelvic lymph nodes: guidelines for delineation in intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2005;63:1604–12.

    Article  Google Scholar 

  6. Lim K, Small W Jr, Portelance L, et al. Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy for the definitive treatment of cervix cancer. Int J Radiat Oncol Biol Phys. 2011;79:348–55.

    Article  Google Scholar 

  7. Small W Jr, Mell LK, Anderson P, et al. Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy in postoperative treatment of endometrial and cervical cancer. Int J Radiat Oncol Biol Phys. 2008;71:428–34.

    Article  Google Scholar 

  8. Schwarz JK, Beriwal S, Esthappan J, et al. Consensus statement for brachytherapy for the treatment of medically inoperable endometrial cancer. Brachytherapy. 2015;14:587–99.

    Article  Google Scholar 

  9. Buchali A, Koswig S, Dinges S, et al. Impact of the filling status of the bladder and rectum on their integral dose distribution and the movement of the uterus in the treatment planning of gynaecological cancer. Radiother Oncol. 1999;52:29–34.

    Article  CAS  Google Scholar 

  10. Bonin SR, Lanciano RM, Corn BW, Hogan WM, Hartz WH, Hanks GE. Bony landmarks are not an adequate substitute for lymphangiography in defining pelvic lymph node location for the treatment of cervical cancer with radiotherapy. Int J Radiat Oncol Biol Phys. 1996;34:167–72.

    Article  CAS  Google Scholar 

  11. Eifel PJ, Winter K, Morris M, et al. Pelvic irradiation with concurrent chemotherapy versus pelvic and para-aortic irradiation for high-risk cervical cancer: an update of radiation therapy oncology group trial (RTOG) 90-01. J Clin Oncol. 2004;22:872–80.

    Article  Google Scholar 

  12. Greer BE, Koh WJ, Figge DC, Russell AH, Cain JM, Tamimi HK. Gynecologic radiotherapy fields defined by intraoperative measurements. Gynecol Oncol. 1990;38:421–4.

    Article  CAS  Google Scholar 

  13. Fenkell L, Assenholt M, Nielsen SK, et al. Parametrial boost using midline shielding results in an unpredictable dose to tumor and organs at risk in combined external beam radiotherapy and brachytherapy for locally advanced cervical cancer. Int J Radiat Oncol Biol Phys. 2011;79:1572–9.

    Article  Google Scholar 

  14. Rotman M, Pajak TF, Choi K, et al. Prophylactic extended-field irradiation of para-aortic lymph nodes in stages IIB and bulky IB and IIA cervical carcinomas. Ten-year treatment results of RTOG 79-20. JAMA. 1995;274:387–93.

    Article  CAS  Google Scholar 

  15. Smits RM, Zusterzeel PL, Bekkers RL. Pretreatment retroperitoneal para-aortic lymph node staging in advanced cervical cancer: a review. Int J Gynecol Cancer. 2014;24:973–83.

    Article  Google Scholar 

  16. Vorwerk H, Wagner D, Christiansen H, Hess CF, Hermann RM. An easy irradiation technique (partial half-beam) to reduce renal dose in radiotherapy of cervical cancer including paraaortic lymph nodes. Strahlenther Onkol. 2008;184:473–7.

    Article  Google Scholar 

  17. Dawson LA, Kavanagh BD, Paulino AC, et al. Radiation-associated kidney injury. Int J Radiat Oncol Biol Phys. 2010;76:S108–15.

    Article  Google Scholar 

  18. Georgiou A, Grigsby PW, Perez CA. Radiation induced lumbosacral plexopathy in gynecologic tumors: clinical findings and dosimetric analysis. Int J Radiat Oncol Biol Phys. 1993;26:479–82.

    Article  CAS  Google Scholar 

  19. Kavanagh BD, Pan CC, Dawson LA, et al. Radiation dose-volume effects in the stomach and small bowel. Int J Radiat Oncol Biol Phys. 2010;76:S101–7.

    Article  Google Scholar 

  20. Verma J, Sulman EP, Jhingran A, et al. Dosimetric predictors of duodenal toxicity after intensity modulated radiation therapy for treatment of the para-aortic nodes in gynecologic cancer. Int J Radiat Oncol Biol Phys. 2014;88:357–62.

    Article  Google Scholar 

  21. Gaffney DK, King B, Viswanathan AN, et al. Consensus recommendations for radiation therapy contouring and treatment of vulvar carcinoma. Int J Radiat Oncol Biol Phys. 2016;95:1191–200.

    Article  Google Scholar 

  22. Moore DH, Ali S, Koh WJ, et al. A phase II trial of radiation therapy and weekly cisplatin chemotherapy for the treatment of locally-advanced squamous cell carcinoma of the vulva: a gynecologic oncology group study. Gynecol Oncol. 2012;124:529–33.

    Article  CAS  Google Scholar 

  23. Heaps JM, Fu YS, Montz FJ, Hacker NF, Berek JS. Surgical-pathologic variables predictive of local recurrence in squamous cell carcinoma of the vulva. Gynecol Oncol. 1990;38:309–14.

    Article  CAS  Google Scholar 

  24. Kunos C, Simpkins F, Gibbons H, Tian C, Homesley H. Radiation therapy compared with pelvic node resection for node-positive vulvar cancer: a randomized controlled trial. Obstet Gynecol. 2009;114:537–46.

    Article  Google Scholar 

  25. Dusenbery KE, Carlson JW, LaPorte RM, et al. Radical vulvectomy with postoperative irradiation for vulvar cancer: therapeutic implications of a central block. Int J Radiat Oncol Biol Phys. 1994;29:989–98.

    Article  CAS  Google Scholar 

  26. Gay HA, Barthold HJ, O'Meara E, et al. Pelvic normal tissue contouring guidelines for radiation therapy: a Radiation Therapy Oncology Group consensus panel atlas. Int J Radiat Oncol Biol Phys. 2012;83:e353–62.

    Article  Google Scholar 

  27. Kim CH, Olson AC, Kim H, Beriwal S. Contouring inguinal and femoral nodes; how much margin is needed around the vessels? Pract Radiat Oncol. 2012;2:274–8.

    Article  Google Scholar 

  28. Koh WJ, Greer BE, Abu-Rustum NR, et al. Vulvar cancer, version 1.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2017;15:92–120.

    Article  Google Scholar 

  29. Kalend AM, Park TL, Wu A, et al. Clinical use of a wing field with transmission block for the treatment of the pelvis including the inguinal node. Int J Radiat Oncol Biol Phys. 1990;19:153–8.

    Article  CAS  Google Scholar 

  30. Gilroy JS, Amdur RJ, Louis DA, Li JG, Mendenhall WM. Irradiating the groin nodes without breaking a leg: a comparison of techniques for groin node irradiation. Med Dosim. 2004;29:258–64.

    Article  Google Scholar 

  31. Moran MS, Castrucci WA, Ahmad M, et al. Clinical utility of the modified segmental boost technique for treatment of the pelvis and inguinal nodes. Int J Radiat Oncol Biol Phys. 2010;76:1026–36.

    Article  CAS  Google Scholar 

  32. Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21:109–22.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junzo Chino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Damast, S., Leung, E., Chino, J. (2019). 3D Planning. In: Albuquerque, K., Beriwal, S., Viswanathan, A., Erickson, B. (eds) Radiation Therapy Techniques for Gynecological Cancers. Practical Guides in Radiation Oncology. Springer, Cham. https://doi.org/10.1007/978-3-030-01443-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01443-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01442-1

  • Online ISBN: 978-3-030-01443-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics