3D Planning

Part of the Practical Guides in Radiation Oncology book series (PGRO)


Three-dimensional treatment planning is a critical technique for the treatment of many gynecologic malignancies. It can provide comprehensive coverage of clinical targets of radiotherapy while sparing normal tissues within expected tolerance doses. It is potentially less sensitive to organ motion and less expensive than intensity-modulated radiation therapy or volumetric modulated arc therapy. This chapter described the indications, simulation, and planning techniques associated with treatment of the pelvis, para-aortic volumes, and inguinal nodal basins.


3D conformal radiation therapy Whole pelvic radiation therapy Para-aortic radiation therapy Extended field radiation therapy Inguinal radiation therapy 


  1. 1.
    Goitein M, Abrams M. Multi-dimensional treatment planning: I. Delineation of anatomy. Int J Radiat Oncol Biol Phys. 1983;9:777–87.CrossRefGoogle Scholar
  2. 2.
    Chen LA, Kim J, Boucher K, et al. Toxicity and cost-effectiveness analysis of intensity modulated radiation therapy versus 3-dimensional conformal radiation therapy for postoperative treatment of gynecologic cancers. Gynecol Oncol. 2015;136:521–8.CrossRefGoogle Scholar
  3. 3.
    Pearcey R, Brundage M, Drouin P, et al. Phase III trial comparing radical radiotherapy with and without cisplatin chemotherapy in patients with advanced squamous cell cancer of the cervix. J Clin Oncol. 2002;20:966–72.CrossRefGoogle Scholar
  4. 4.
    Klopp AH, Yeung AR, Deshmukh S, et al. A phase III randomized trial comparing patient-reported toxicity and quality of life (QOL) during pelvic intensity modulated radiation therapy as compared to conventional radiation therapy. Int J Radiat Oncol Biol Phys. 2016;96:S3.CrossRefGoogle Scholar
  5. 5.
    Taylor A, Rockall AG, Reznek RH, Powell ME. Mapping pelvic lymph nodes: guidelines for delineation in intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2005;63:1604–12.CrossRefGoogle Scholar
  6. 6.
    Lim K, Small W Jr, Portelance L, et al. Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy for the definitive treatment of cervix cancer. Int J Radiat Oncol Biol Phys. 2011;79:348–55.CrossRefGoogle Scholar
  7. 7.
    Small W Jr, Mell LK, Anderson P, et al. Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy in postoperative treatment of endometrial and cervical cancer. Int J Radiat Oncol Biol Phys. 2008;71:428–34.CrossRefGoogle Scholar
  8. 8.
    Schwarz JK, Beriwal S, Esthappan J, et al. Consensus statement for brachytherapy for the treatment of medically inoperable endometrial cancer. Brachytherapy. 2015;14:587–99.CrossRefGoogle Scholar
  9. 9.
    Buchali A, Koswig S, Dinges S, et al. Impact of the filling status of the bladder and rectum on their integral dose distribution and the movement of the uterus in the treatment planning of gynaecological cancer. Radiother Oncol. 1999;52:29–34.CrossRefGoogle Scholar
  10. 10.
    Bonin SR, Lanciano RM, Corn BW, Hogan WM, Hartz WH, Hanks GE. Bony landmarks are not an adequate substitute for lymphangiography in defining pelvic lymph node location for the treatment of cervical cancer with radiotherapy. Int J Radiat Oncol Biol Phys. 1996;34:167–72.CrossRefGoogle Scholar
  11. 11.
    Eifel PJ, Winter K, Morris M, et al. Pelvic irradiation with concurrent chemotherapy versus pelvic and para-aortic irradiation for high-risk cervical cancer: an update of radiation therapy oncology group trial (RTOG) 90-01. J Clin Oncol. 2004;22:872–80.CrossRefGoogle Scholar
  12. 12.
    Greer BE, Koh WJ, Figge DC, Russell AH, Cain JM, Tamimi HK. Gynecologic radiotherapy fields defined by intraoperative measurements. Gynecol Oncol. 1990;38:421–4.CrossRefGoogle Scholar
  13. 13.
    Fenkell L, Assenholt M, Nielsen SK, et al. Parametrial boost using midline shielding results in an unpredictable dose to tumor and organs at risk in combined external beam radiotherapy and brachytherapy for locally advanced cervical cancer. Int J Radiat Oncol Biol Phys. 2011;79:1572–9.CrossRefGoogle Scholar
  14. 14.
    Rotman M, Pajak TF, Choi K, et al. Prophylactic extended-field irradiation of para-aortic lymph nodes in stages IIB and bulky IB and IIA cervical carcinomas. Ten-year treatment results of RTOG 79-20. JAMA. 1995;274:387–93.CrossRefGoogle Scholar
  15. 15.
    Smits RM, Zusterzeel PL, Bekkers RL. Pretreatment retroperitoneal para-aortic lymph node staging in advanced cervical cancer: a review. Int J Gynecol Cancer. 2014;24:973–83.CrossRefGoogle Scholar
  16. 16.
    Vorwerk H, Wagner D, Christiansen H, Hess CF, Hermann RM. An easy irradiation technique (partial half-beam) to reduce renal dose in radiotherapy of cervical cancer including paraaortic lymph nodes. Strahlenther Onkol. 2008;184:473–7.CrossRefGoogle Scholar
  17. 17.
    Dawson LA, Kavanagh BD, Paulino AC, et al. Radiation-associated kidney injury. Int J Radiat Oncol Biol Phys. 2010;76:S108–15.CrossRefGoogle Scholar
  18. 18.
    Georgiou A, Grigsby PW, Perez CA. Radiation induced lumbosacral plexopathy in gynecologic tumors: clinical findings and dosimetric analysis. Int J Radiat Oncol Biol Phys. 1993;26:479–82.CrossRefGoogle Scholar
  19. 19.
    Kavanagh BD, Pan CC, Dawson LA, et al. Radiation dose-volume effects in the stomach and small bowel. Int J Radiat Oncol Biol Phys. 2010;76:S101–7.CrossRefGoogle Scholar
  20. 20.
    Verma J, Sulman EP, Jhingran A, et al. Dosimetric predictors of duodenal toxicity after intensity modulated radiation therapy for treatment of the para-aortic nodes in gynecologic cancer. Int J Radiat Oncol Biol Phys. 2014;88:357–62.CrossRefGoogle Scholar
  21. 21.
    Gaffney DK, King B, Viswanathan AN, et al. Consensus recommendations for radiation therapy contouring and treatment of vulvar carcinoma. Int J Radiat Oncol Biol Phys. 2016;95:1191–200.CrossRefGoogle Scholar
  22. 22.
    Moore DH, Ali S, Koh WJ, et al. A phase II trial of radiation therapy and weekly cisplatin chemotherapy for the treatment of locally-advanced squamous cell carcinoma of the vulva: a gynecologic oncology group study. Gynecol Oncol. 2012;124:529–33.CrossRefGoogle Scholar
  23. 23.
    Heaps JM, Fu YS, Montz FJ, Hacker NF, Berek JS. Surgical-pathologic variables predictive of local recurrence in squamous cell carcinoma of the vulva. Gynecol Oncol. 1990;38:309–14.CrossRefGoogle Scholar
  24. 24.
    Kunos C, Simpkins F, Gibbons H, Tian C, Homesley H. Radiation therapy compared with pelvic node resection for node-positive vulvar cancer: a randomized controlled trial. Obstet Gynecol. 2009;114:537–46.CrossRefGoogle Scholar
  25. 25.
    Dusenbery KE, Carlson JW, LaPorte RM, et al. Radical vulvectomy with postoperative irradiation for vulvar cancer: therapeutic implications of a central block. Int J Radiat Oncol Biol Phys. 1994;29:989–98.CrossRefGoogle Scholar
  26. 26.
    Gay HA, Barthold HJ, O'Meara E, et al. Pelvic normal tissue contouring guidelines for radiation therapy: a Radiation Therapy Oncology Group consensus panel atlas. Int J Radiat Oncol Biol Phys. 2012;83:e353–62.CrossRefGoogle Scholar
  27. 27.
    Kim CH, Olson AC, Kim H, Beriwal S. Contouring inguinal and femoral nodes; how much margin is needed around the vessels? Pract Radiat Oncol. 2012;2:274–8.CrossRefGoogle Scholar
  28. 28.
    Koh WJ, Greer BE, Abu-Rustum NR, et al. Vulvar cancer, version 1.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2017;15:92–120.CrossRefGoogle Scholar
  29. 29.
    Kalend AM, Park TL, Wu A, et al. Clinical use of a wing field with transmission block for the treatment of the pelvis including the inguinal node. Int J Radiat Oncol Biol Phys. 1990;19:153–8.CrossRefGoogle Scholar
  30. 30.
    Gilroy JS, Amdur RJ, Louis DA, Li JG, Mendenhall WM. Irradiating the groin nodes without breaking a leg: a comparison of techniques for groin node irradiation. Med Dosim. 2004;29:258–64.CrossRefGoogle Scholar
  31. 31.
    Moran MS, Castrucci WA, Ahmad M, et al. Clinical utility of the modified segmental boost technique for treatment of the pelvis and inguinal nodes. Int J Radiat Oncol Biol Phys. 2010;76:1026–36.CrossRefGoogle Scholar
  32. 32.
    Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21:109–22.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Therapeutic RadiologyYale University School of MedicineNew HavenUSA
  2. 2.Odette Cancer CentreUniversity of Toronto, Sunnybrook Health Sciences CentreTorontoCanada
  3. 3.Department of Radiation OncologyUniversity of Toronto, Sunnybrook Health Sciences CentreTorontoCanada
  4. 4.Department of Radiation OncologyDuke Cancer InstituteDurhamUSA

Personalised recommendations