CT and MRI Simulation for Radiation Planning

Part of the Practical Guides in Radiation Oncology book series (PGRO)


Simulation of the gynecologic cancer patient is a critical step in order to generate a high-quality radiation plan. Consideration must be given to not only the target area and nearby organs at risk but also the characteristics of the patient and the anticipated treatment machine’s capabilities and limitations. The degree of immobilization, reproducibility of setup, the ability to track organ motion, onboard imaging capabilities, patient body habitus, and overall patient health must all be considered. Below, we discuss these aspects of planning and review several techniques and devices that can be used for challenging clinical scenarios.


Simulation Immobilization Workflow Imaging 


  1. 1.
    Grover S, Harkenrider MM, Cho LP, Erickson B, Small C, Small W Jr, et al. Image guided cervical brachytherapy: 2014 survey of the American Brachytherapy Society. Int J Radiat Oncol Biol Phys. 2016;94(3):598–604. Scholar
  2. 2.
    Somigliana A, Zonca G, Loi G, Sichirollo AE. How thick should CT/MR slices be to plan conformal radiotherapy? A study on the accuracy of three-dimensional volume reconstruction. Tumori. 1996;82(5):470–2.CrossRefGoogle Scholar
  3. 3.
    Joseph K, Liu D, Severin D, Dickey M, Polkosnik LA, Warkentin H, et al. Dosimetric effect of small bowel oral contrast on conventional radiation therapy, linear accelerator-based intensity modulated radiation therapy, and helical tomotherapy plans for rectal cancer. Pract Radiat Oncol. 2015;5(2):e95–102. Scholar
  4. 4.
    Yang RJ, Wang WB, Zhang Y. Effect of intravenous contrast agent on dose distribution in treatment planning for postoperative whole pelvic radiotherapy of gynecologic cancer. J Pract Oncol. 2010;3:20.Google Scholar
  5. 5.
    Tsai CC, Tsai CS, Ng KK, Lai CH, Hsueh S, Kao PF, et al. The impact of image fusion in resolving discrepant findings between FDG-PET and MRI/CT in patients with gynaecological cancers. Eur J Nucl Med Mol Imaging. 2003;30(12):1674–83. Scholar
  6. 6.
    Heron DE, Andrade RS, Flickinger J, Johnson J, Agarwala SS, Wu A, et al. Hybrid PET-CT simulation for radiation treatment planning in head-and-neck cancers: a brief technical report. Int J Radiat Oncol Biol Phys. 2004;60(5):1419–24. Scholar
  7. 7.
    Terezakis SA, Hunt MA, Kowalski A, McCann P, Schmidtlein CR, Reiner A, et al. [(1)(8)F]FDG-positron emission tomography coregistration with computed tomography scans for radiation treatment planning of lymphoma and hematologic malignancies. Int J Radiat Oncol Biol Phys. 2011;81(3):615–22. CrossRefPubMedGoogle Scholar
  8. 8.
    Das IJ, Lanciano RM, Movsas B, Kagawa K, Barnes SJ. Efficacy of a belly board device with CT-simulation in reducing small bowel volume within pelvic irradiation fields. Int J Radiat Oncol Biol Phys. 1997;39(1):67–76.CrossRefGoogle Scholar
  9. 9.
    Estabrook NC, Bartlett GK, Compton JJ, Cardenes HR, Das IJ. Role of belly board device in the age of intensity modulated radiotherapy for pelvic irradiation. Med Dosim. 2016;41(4):300–4. CrossRefPubMedGoogle Scholar
  10. 10.
    Froseth TC, Strickert T, Solli KS, Salvesen O, Frykholm G, Reidunsdatter RJ. A randomized study of the effect of patient positioning on setup reproducibility and dose distribution to organs at risk in radiotherapy of rectal cancer patients. Radiat Oncol. 2015;10:217. Scholar
  11. 11.
    Zhao H, Wang B, Sarkar V, Rassiah-Szegedi P, Huang YJ, Szegedi M, et al. Comparison of surface matching and target matching for image-guided pelvic radiation therapy for both supine and prone patient positions. J Appl Clin Med Phys. 2016;17(3):14–24. Scholar
  12. 12.
    Stromberger C, Kom Y, Kawgan-Kagan M, Mensing T, Jahn U, Schneider A, et al. Intensity-modulated radiotherapy in patients with cervical cancer. An intra-individual comparison of prone and supine positioning. Radiat Oncol. 2010;5:63. Scholar
  13. 13.
    Townamchai K, Poorvu PD, Damato AL, DeMaria R, Lee LJ, Berlin S, et al. Radiation dose escalation using intensity modulated radiation therapy for gross unresected node-positive endometrial cancer. Pract Radiat Oncol. 2014;4(2):90–8. Scholar
  14. 14.
    Taku N, Dise J, Kenton O, Yin L, Teo BK, Lin LL. Quantification of vaginal motion associated with daily endorectal balloon placement during whole pelvis radiotherapy for gynecologic cancers. Radiother Oncol. 2016;120(3):532–6. CrossRefPubMedGoogle Scholar
  15. 15.
    van de Bunt L, Jurgenliemk-Schulz IM, de Kort GA, Roesink JM, Tersteeg RJ, van der Heide UA. Motion and deformation of the target volumes during IMRT for cervical cancer: what margins do we need? Radiother Oncol. 2008;88(2):233–40. CrossRefPubMedGoogle Scholar
  16. 16.
    Huh SJ, Park W, Han Y. Interfractional variation in position of the uterus during radical radiotherapy for cervical cancer. Radiother Oncol. 2004;71(1):73–9. CrossRefPubMedGoogle Scholar
  17. 17.
    Eminowicz G, Motlib J, Khan S, Perna C, McCormack M. Pelvic organ motion during radiotherapy for cervical cancer: understanding patterns and recommended patient preparation. Clin Oncol. 2016;28(9):e85–91. Scholar
  18. 18.
    Eminowicz G, Rompokos V, Stacey C, Hall L, McCormack M. Understanding the impact of pelvic organ motion on dose delivered to target volumes during IMRT for cervical cancer. Radiother Oncol. 2017;122(1):116–21. CrossRefPubMedGoogle Scholar
  19. 19.
    Murakami N, Norihisa Y, Isohashi F, Murofushi K, Ariga T, Kato T, et al. Proposed definition of the vaginal cuff and paracolpium clinical target volume in postoperative uterine cervical cancer. Pract Radiat Oncol. 2016;6(1):5–11. Scholar
  20. 20.
    Michaud AL, Benedict S, Montemayor E, Hunt JP, Wright C, Mathai M, et al. Workflow efficiency for the treatment planning process in CT-guided high-dose-rate brachytherapy for cervical cancer. Brachytherapy. 2016;15(5):578–83. Scholar
  21. 21.
    Hellebust TP, Kirisits C, Berger D, Perez-Calatayud J, De Brabandere M, De Leeuw A, et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group: considerations and pitfalls in commissioning and applicator reconstruction in 3D image-based treatment planning of cervix cancer brachytherapy. Radiother Oncol. 2010;96(2):153–60. CrossRefPubMedGoogle Scholar
  22. 22.
    Potter R, Dimopoulos J, Georg P, Lang S, Waldhausl C, Wachter-Gerstner N, et al. Clinical impact of MRI assisted dose volume adaptation and dose escalation in brachytherapy of locally advanced cervix cancer. Radiother Oncol. 2007;83(2):148–55. CrossRefPubMedGoogle Scholar
  23. 23.
    Jurgenliemk-Schulz IM, Tersteeg RJ, Roesink JM, Bijmolt S, Nomden CN, Moerland MA, et al. MRI-guided treatment-planning optimisation in intracavitary or combined intracavitary/interstitial PDR brachytherapy using tandem ovoid applicators in locally advanced cervical cancer. Radiother Oncol. 2009;93(2):322–30. CrossRefPubMedGoogle Scholar
  24. 24.
    Tanderup K, Nielsen SK, Nyvang GB, Pedersen EM, Rohl L, Aagaard T, et al. From point A to the sculpted pear: MR image guidance significantly improves tumour dose and sparing of organs at risk in brachytherapy of cervical cancer. Radiother Oncol. 2010;94(2):173–80. CrossRefPubMedGoogle Scholar
  25. 25.
    Potter R, Georg P, Dimopoulos JC, Grimm M, Berger D, Nesvacil N, et al. Clinical outcome of protocol based image (MRI) guided adaptive brachytherapy combined with 3D conformal radiotherapy with or without chemotherapy in patients with locally advanced cervical cancer. Radiother Oncol. 2011;100(1):116–23. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ho JC, Allen PK, Bhosale PR, Rauch GM, Fuller CD, Mohamed AS, et al. Diffusion-weighted magnetic resonance imaging as a predictor of outcome in cervical cancer after chemoradiation. Int J Radiat Oncol Biol Phys. 2017;97(3):546–53. Scholar
  27. 27.
    Gladwish A, Milosevic M, Fyles A, Xie J, Halankar J, Metser U, et al. Association of apparent diffusion coefficient with disease recurrence in patients with locally advanced cervical cancer treated with radical chemotherapy and radiation therapy. Radiology. 2016;279(1):158–66. Scholar
  28. 28.
    Owrangi AM, Jolly S, Balter JM, Cao Y, Maturen KE, Young L, et al. Clinical implementation of MR-guided vaginal cylinder brachytherapy. J Appl Clin Med Phys. 2015;16(6):490–500. Scholar
  29. 29.
    Chapman CH, Prisciandaro JI, Maturen KE, Cao Y, Balter JM, McLean K, et al. MRI-based evaluation of the vaginal cuff in brachytherapy planning: are we missing the target? Int J Radiat Oncol Biol Phys. 2016;95(2):743–50. Scholar
  30. 30.
    Khoo VS, Dearnaley DP, Finnigan DJ, Padhani A, Tanner SF, Leach MO. Magnetic resonance imaging (MRI): considerations and applications in radiotherapy treatment planning. Radiother Oncol. 1997;42(1):1–15.CrossRefGoogle Scholar
  31. 31.
    Liu L, Cao Y, Fessler JA, Jolly S, Balter JM. A female pelvic bone shape model for air/bone separation in support of synthetic CT generation for radiation therapy. Phys Med Biol. 2016;61(1):169–82. Scholar
  32. 32.
    Dimopoulos JC, Petrow P, Tanderup K, Petric P, Berger D, Kirisits C, et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (IV): basic principles and parameters for MR imaging within the frame of image based adaptive cervix cancer brachytherapy. Radiother Oncol. 2012;103(1):113–22. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kim Y, Muruganandham M, Modrick JM, Bayouth JE. Evaluation of artifacts and distortions of titanium applicators on 3.0-Tesla MRI: feasibility of titanium applicators in MRI-guided brachytherapy for gynecological cancer. Int J Radiat Oncol Biol Phys. 2011;80(3):947–55. Scholar
  34. 34.
    Narayan K, Barkati M, van Dyk S, Bernshaw D. Image-guided brachytherapy for cervix cancer: from Manchester to Melbourne. Expert Rev Anticancer Ther. 2010;10(1):41–6. Scholar
  35. 35.
    Beriwal S, Demanes DJ, Erickson B, Jones E, De Los Santos JF, Cormack RA, et al. American Brachytherapy Society consensus guidelines for interstitial brachytherapy for vaginal cancer. Brachytherapy. 2012;11(1):68–75. Scholar
  36. 36.
    Expert Panel on MRS, Kanal E, Barkovich AJ, Bell C, Borgstede JP, Bradley WG Jr, et al. ACR guidance document on MR safe practices: 2013. J Magn Reson Imaging. 2013;37(3):501–30. Scholar
  37. 37.
    Fisher CM, Fortenberry BR, Jhingran A, Eifel PJ. Novel technique for simulation and external beam treatment planning for obese patients. Pract Radiat Oncol. 2011;1(3):152–5. Scholar
  38. 38.
    Whitley AC, Prendergast BM, Kim RY. Novel setup techniques for radiation treatment of severely obese patients with cervical cancer. Pract Radiat Oncol. 2012;2(4):e107–12. Scholar
  39. 39.
    Kunos C, Chen W, DeBernardo R, Waggoner S, Brindle J, Zhang Y, et al. Stereotactic body radiosurgery for pelvic relapse of gynecologic malignancies. Technol Cancer Res Treat. 2009;8(5):393–400. Scholar
  40. 40.
    Kunos C, von Gruenigen V, Waggoner S, Brindle J, Zhang Y, Myers B, et al. Cyberknife radiosurgery for squamous cell carcinoma of vulva after prior pelvic radiation therapy. Technol Cancer Res Treat. 2008;7(5):375–80. Scholar
  41. 41.
    Choi CW, Cho CK, Yoo SY, Kim MS, Yang KM, Yoo HJ, et al. Image-guided stereotactic body radiation therapy in patients with isolated para-aortic lymph node metastases from uterine cervical and corpus cancer. Int J Radiat Oncol Biol Phys. 2009;74(1):147–53. Scholar
  42. 42.
    Park HJ, Chang AR, Seo Y, Cho CK, Jang WI, Kim MS, et al. Stereotactic body radiotherapy for recurrent or oligometastatic uterine cervix cancer: a cooperative study of the Korean Radiation Oncology Group (KROG 14-11). Anticancer Res. 2015;35(9):5103–10.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Radiation OncologyVanderbilt University Medical CenterNashvilleUSA
  2. 2.Department of Radiation OncologyUniversity of Michigan Hospitals and Health CentersAnn ArborUSA
  3. 3.Department of Radiation OncologyCleveland Clinic FoundationClevelandUSA
  4. 4.Department of Radiation OncologyUT SouthwesternDallasUSA

Personalised recommendations