Advertisement

Stereotactic Ablative Radiotherapy and Other Newer Treatment Delivery Techniques for Gynecologic Cancers

Chapter
  • 631 Downloads
Part of the Practical Guides in Radiation Oncology book series (PGRO)

Abstract

There are approximately 71,500 new gynecologic cancers diagnosed each year in the USA. Radiotherapy plays a significant role in the definitive or adjuvant management of gynecologic cancers. Techniques including permanent seed brachytherapy, particle therapy with carbon ion/proton beam radiotherapy, and stereotactic ablative radiotherapy (SAbR) are increasingly being investigated and used clinically for the management of newly diagnosed gynecologic cancers or in the recurrent or re-irradiation setting. The purpose of this chapter is to review the clinical literature, indications, simulation and treatment planning, and physics considerations with each of these techniques.

Keywords

Permanent interstitial brachytherapy Carbon ion therapy Proton therapy Stereotactic body radiotherapy 

References

  1. 1.
    Prevention CfDCa. Get the facts about gynecologic cancer. Center for Disease Control and Prevention. 2017.Google Scholar
  2. 2.
    Bagshaw HP, Pappas LM, Kepka DL, Tward JD, Gaffney DK. Patterns of care with brachytherapy for cervical cancer. Int J Gynecol Cancer. 2014;24(9):1659–64.  https://doi.org/10.1097/IGC.0000000000000276.PubMedCrossRefGoogle Scholar
  3. 3.
    Gill BS, Lin JF, Krivak TC, Sukumvanich P, Laskey RA, Ross MS, et al. National Cancer Data Base analysis of radiation therapy consolidation modality for cervical cancer: the impact of new technological advancements. Int J Radiat Oncol Biol Phys. 2014;90(5):1083–90.  https://doi.org/10.1016/j.ijrobp.2014.07.017.PubMedCrossRefGoogle Scholar
  4. 4.
    Han K, Milosevic M, Fyles A, Pintilie M, Viswanathan AN. Trends in the utilization of brachytherapy in cervical cancer in the United States. Int J Radiat Oncol Biol Phys. 2013;87(1):111–9.  https://doi.org/10.1016/j.ijrobp.2013.05.033.PubMedCrossRefGoogle Scholar
  5. 5.
    Orton A, Boothe D, Williams N, Buchmiller T, Huang YJ, Suneja G, et al. Brachytherapy improves survival in primary vaginal cancer. Gynecol Oncol. 2016;141(3):501–6.  https://doi.org/10.1016/j.ygyno.2016.03.011.PubMedCrossRefGoogle Scholar
  6. 6.
    Smith GL, Jiang J, Giordano SH, Meyer LA, Eifel PJ. Trends in the quality of treatment for patients with intact cervical cancer in the United States, 1999 through 2011. Int J Radiat Oncol Biol Phys. 2015;92(2):260–7.  https://doi.org/10.1016/j.ijrobp.2015.01.037.PubMedCrossRefGoogle Scholar
  7. 7.
    Tanderup K, Eifel PJ, Yashar CM, Potter R, Grigsby PW. Curative radiation therapy for locally advanced cervical cancer: brachytherapy is NOT optional. Int J Radiat Oncol Biol Phys. 2014;88(3):537–9.  https://doi.org/10.1016/j.ijrobp.2013.11.011.PubMedCrossRefGoogle Scholar
  8. 8.
    Viswanathan AN, Thomadsen B, American Brachytherapy Society Cervical Cancer Recommendations C, American Brachytherapy S. American Brachytherapy Society consensus guidelines for locally advanced carcinoma of the cervix. Part I: general principles. Brachytherapy. 2012;11(1):33–46.  https://doi.org/10.1016/j.brachy.2011.07.003.PubMedCrossRefGoogle Scholar
  9. 9.
    Fortin I, Tanderup K, Haie-Meder C, Lindegaard JC, Mahanshetty U, Segedin B, et al. Image guided brachytherapy in cervical cancer: a comparison between intracavitary and combined intracavitary/interstitial brachytherapy in regard to doses to HR CTV, OARs and late morbidity—early results from the Embrace study in 999 patients. Brachytherapy. 2016;15:S21.CrossRefGoogle Scholar
  10. 10.
    Bradford LS, Rauh-Hain JA, Schorge J, Birrer MJ, Dizon DS. Advances in the management of recurrent endometrial cancer. Am J Clin Oncol. 2015;38(2):206–12.  https://doi.org/10.1097/COC.0b013e31829a2974.PubMedCrossRefGoogle Scholar
  11. 11.
    Hunter DJ. Carcinoma of the vulva: a review of 361 patients. Gynecol Oncol. 1975;3(2):117–23.PubMedCrossRefGoogle Scholar
  12. 12.
    Qiu JT, Abdullah NA, Chou HH, Lin CT, Jung SM, Wang CC, et al. Outcomes and prognosis of patients with recurrent cervical cancer after radical hysterectomy. Gynecol Oncol. 2012;127(3):472–7.  https://doi.org/10.1016/j.ygyno.2012.08.008.PubMedCrossRefGoogle Scholar
  13. 13.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29.  https://doi.org/10.3322/caac.21254.PubMedCrossRefGoogle Scholar
  14. 14.
    Maggioni A, Roviglione G, Landoni F, Zanagnolo V, Peiretti M, Colombo N, et al. Pelvic exenteration: ten-year experience at the European Institute of Oncology in Milan. Gynecol Oncol. 2009;114(1):64–8.  https://doi.org/10.1016/j.ygyno.2009.03.029.PubMedCrossRefGoogle Scholar
  15. 15.
    Benn T, Brooks RA, Zhang Q, Powell MA, Thaker PH, Mutch DG, et al. Pelvic exenteration in gynecologic oncology: a single institution study over 20 years. Gynecol Oncol. 2011;122(1):14–8.  https://doi.org/10.1016/j.ygyno.2011.03.003.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Hockel M, Dornhofer N. Pelvic exenteration for gynaecological tumours: achievements and unanswered questions. Lancet Oncol. 2006;7(10):837–47.  https://doi.org/10.1016/S1470-2045(06)70903-2.PubMedCrossRefGoogle Scholar
  17. 17.
    Marnitz S, Kohler C, Muller M, Behrens K, Hasenbein K, Schneider A. Indications for primary and secondary exenterations in patients with cervical cancer. Gynecol Oncol. 2006;103(3):1023–30.  https://doi.org/10.1016/j.ygyno.2006.06.027.PubMedCrossRefGoogle Scholar
  18. 18.
    Peiretti M, Zapardiel I, Zanagnolo V, Landoni F, Morrow CP, Maggioni A. Management of recurrent cervical cancer: a review of the literature. Surg Oncol. 2012;21(2):e59–66.  https://doi.org/10.1016/j.suronc.2011.12.008.PubMedCrossRefGoogle Scholar
  19. 19.
    Sharma SK, Forgione H, Isaacs JH. Iodine-125 interstitial implants as salvage therapy for recurrent gynecologic malignancies. Cancer. 1991;67(10):2467–71.PubMedCrossRefGoogle Scholar
  20. 20.
    Fotopoulou C, Neumann U, Kraetschell R, Schefold JC, Weidemann H, Lichtenegger W, et al. Long-term clinical outcome of pelvic exenteration in patients with advanced gynecological malignancies. J Surg Oncol. 2010;101(6):507–12.  https://doi.org/10.1002/jso.21518.PubMedCrossRefGoogle Scholar
  21. 21.
    Miller B, Morris M, Levenback C, Burke TW, Gershenson DM. Pelvic exenteration for primary and recurrent vulvar cancer. Gynecol Oncol. 1995;58(2):202–5.  https://doi.org/10.1006/gyno.1995.1211.PubMedCrossRefGoogle Scholar
  22. 22.
    Rutledge FN, Smith JP, Wharton JT, O'Quinn AG. Pelvic exenteration: analysis of 296 patients. Am J Obstet Gynecol. 1977;129(8):881–92.PubMedCrossRefGoogle Scholar
  23. 23.
    Martinez A, Herstein P, Portnuff J. Interstitial therapy of perineal and gynecological malignancies. Int J Radiat Oncol Biol Phys. 1983;9(3):409–16.PubMedCrossRefGoogle Scholar
  24. 24.
    Dowdy SC, Mariani A, Cliby WA, Haddock MG, Petersen IA, Sim FH, et al. Radical pelvic resection and intraoperative radiation therapy for recurrent endometrial cancer: technique and analysis of outcomes. Gynecol Oncol. 2006;101(2):280–6.  https://doi.org/10.1016/j.ygyno.2005.10.018.PubMedCrossRefGoogle Scholar
  25. 25.
    Hockel M, Sclenger K, Hamm H, Knapstein PG, Hohenfellner R, Rosler HP. Five-year experience with combined operative and radiotherapeutic treatment of recurrent gynecologic tumors infiltrating the pelvic wall. Cancer. 1996;77(9):1918–33.  https://doi.org/10.1002/(SICI)1097-0142(19960501)77:9<1918::AID-CNCR24>3.0.CO;2-1.PubMedCrossRefGoogle Scholar
  26. 26.
    Kitagawa R, Katsumata N, Shibata T, Kamura T, Kasamatsu T, Nakanishi T, et al. Paclitaxel plus carboplatin versus paclitaxel plus cisplatin in metastatic or recurrent cervical cancer: the open-label randomized phase III trial JCOG0505. J Clin Oncol. 2015;33(19):2129–35.  https://doi.org/10.1200/JCO.2014.58.4391.PubMedCrossRefGoogle Scholar
  27. 27.
    Long HJ 3rd, Bundy BN, Grendys EC Jr, Benda JA, McMeekin DS, Sorosky J, et al. Randomized phase III trial of cisplatin with or without topotecan in carcinoma of the uterine cervix: a Gynecologic Oncology Group Study. J Clin Oncol. 2005;23(21):4626–33.  https://doi.org/10.1200/JCO.2005.10.021.PubMedCrossRefGoogle Scholar
  28. 28.
    Moore DH, Blessing JA, McQuellon RP, Thaler HT, Cella D, Benda J, et al. Phase III study of cisplatin with or without paclitaxel in stage IVB, recurrent, or persistent squamous cell carcinoma of the cervix: a Gynecologic Oncology Group Study. J Clin Oncol. 2004;22(15):3113–9.  https://doi.org/10.1200/JCO.2004.04.170.PubMedCrossRefGoogle Scholar
  29. 29.
    Tewari KS, Sill MW, Long HJ 3rd, Penson RT, Huang H, Ramondetta LM, et al. Improved survival with bevacizumab in advanced cervical cancer. N Engl J Med. 2014;370(8):734–43.  https://doi.org/10.1056/NEJMoa1309748.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Brabham JG, Cardenes HR. Permanent interstitial reirradiation with 198Au as salvage therapy for low volume recurrent gynecologic malignancies: a single institution experience. Am J Clin Oncol. 2009;32(4):417–22.  https://doi.org/10.1097/COC.0b013e318191bfc7.PubMedCrossRefGoogle Scholar
  31. 31.
    Okazawa K, Yuasa-Nakagawa K, Yoshimura R, Shibuya H. Permanent interstitial re-irradiation with Au-198 seeds in patients with post-radiation locally recurrent uterine carcinoma. J Radiat Res. 2013;54(2):299–306.  https://doi.org/10.1093/jrr/rrs092.PubMedCrossRefGoogle Scholar
  32. 32.
    Puthawala AA, Syed AM, Fleming PA, DiSaia PJ. Re-irradiation with interstitial implant for recurrent pelvic malignancies. Cancer. 1982;50(12):2810–4.PubMedCrossRefGoogle Scholar
  33. 33.
    Randall ME, Evans L, Greven KM, McCunniff AJ, Doline RM. Interstitial reirradiation for recurrent gynecologic malignancies: results and analysis of prognostic factors. Gynecol Oncol. 1993;48(1):23–31.  https://doi.org/10.1006/gyno.1993.1005.PubMedCrossRefGoogle Scholar
  34. 34.
    Russell AH, Koh WJ, Markette K, Russell KJ, Cain JM, Tamimi HK, et al. Radical reirradiation for recurrent or second primary carcinoma of the female reproductive tract. Gynecol Oncol. 1987;27(2):226–32.PubMedCrossRefGoogle Scholar
  35. 35.
    Wooten CE, Randall M, Edwards J, Aryal P, Luo W, Feddock J. Implementation and early clinical results utilizing Cs-131 permanent interstitial implants for gynecologic malignancies. Gynecol Oncol. 2014;133(2):268–73.  https://doi.org/10.1016/j.ygyno.2014.02.015.PubMedCrossRefGoogle Scholar
  36. 36.
    Feddock J, Aryal P, Steber C, Edwards J, Cheek D, Randall M. Outpatient template-guided permanent interstitial brachytherapy using 131Cs in gynecologic malignancies: initial report. Brachytherapy. 2017;16(2):393–401.  https://doi.org/10.1016/j.brachy.2016.12.008.PubMedCrossRefGoogle Scholar
  37. 37.
    Jhingran A, Burke TW, Eifel PJ. Definitive radiotherapy for patients with isolated vaginal recurrence of endometrial carcinoma after hysterectomy. Int J Radiat Oncol Biol Phys. 2003;56(5):1366–72.PubMedCrossRefGoogle Scholar
  38. 38.
    Beriwal S, Bhatnagar A, Heron DE, Selvaraj R, Mogus R, Kim H, et al. High-dose-rate interstitial brachytherapy for gynecologic malignancies. Brachytherapy. 2006;5(4):218–22.  https://doi.org/10.1016/j.brachy.2006.09.002.PubMedCrossRefGoogle Scholar
  39. 39.
    Chung JY, Roberts K, Peschel RE, Nath R, Pourang R, Kacinski B, et al. Treatment of recurrent pelvic and selected primary gynecologic malignancies with 241Am. Radiat Oncol Investig. 1997;5(5):227–34.  https://doi.org/10.1002/(SICI)1520-6823(1997)5:5<227::AID-ROI3>3.0.CO;2-#.PubMedCrossRefGoogle Scholar
  40. 40.
    Monk BJ, Walker JL, Tewari K, Ramsinghani NS, Nisar Syed AM, DiSaia PJ. Open interstitial brachytherapy for the treatment of local-regional recurrences of uterine corpus and cervix cancer after primary surgery. Gynecol Oncol. 1994;52(2):222–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Nag S, Yacoub S, Copeland LJ, Fowler JM. Interstitial brachytherapy for salvage treatment of vaginal recurrences in previously unirradiated endometrial cancer patients. Int J Radiat Oncol Biol Phys. 2002;54(4):1153–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Tewari K, Cappuccini F, Brewster WR, DiSaia PJ, Berman ML, Manetta A, et al. Interstitial brachytherapy for vaginal recurrences of endometrial carcinoma. Gynecol Oncol. 1999;74(3):416–22.  https://doi.org/10.1006/gyno.1999.5487.PubMedCrossRefGoogle Scholar
  43. 43.
    Beriwal S, Demanes DJ, Erickson B, Jones E, De Los Santos JF, Cormack RA, et al. American Brachytherapy Society consensus guidelines for interstitial brachytherapy for vaginal cancer. Brachytherapy. 2012;11(1):68–75.  https://doi.org/10.1016/j.brachy.2011.06.008.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Lee LJ, Das IJ, Higgins SA, Jhingran A, Small W Jr, Thomadsen B, et al. American Brachytherapy Society consensus guidelines for locally advanced carcinoma of the cervix. Part III: low-dose-rate and pulsed-dose-rate brachytherapy. Brachytherapy. 2012;11(1):53–7.  https://doi.org/10.1016/j.brachy.2011.07.001.PubMedCrossRefGoogle Scholar
  45. 45.
    ICRUNo38. Dose and volume specification for reporting intracavitary therapy in gynecology. 1985. http://www.icru.org/home/reports/dose-and-volume-specification-for-reporting-intracavitary-therapy-in-gynecology-report-38/.
  46. 46.
    Kunos CA, Sherertz TM, Mislmani M, Ellis RJ, Lo SS, Waggoner SE, et al. Phase I trial of carboplatin and gemcitabine chemotherapy and stereotactic ablative radiosurgery for the palliative treatment of persistent or recurrent gynecologic cancer. Front Oncol. 2015;5(126):1–6.  https://doi.org/10.3389/fonc.2015.00126.CrossRefGoogle Scholar
  47. 47.
    Homesley HD, Filiaci V, Gibbons SK, Long HJ, Cella D, Spirtos NM, et al. A randomized phase III trial in advanced endometrial carcinoma of surgery and volume directed radiation followed by cisplatin and doxorubicin with or without paclitaxel: a Gynecologic Oncology Group Study. Gynecol Oncol. 2009;112(3):543–52.  https://doi.org/10.1016/j.ygyno.2008.11.014.PubMedCrossRefGoogle Scholar
  48. 48.
    Kunos C, von Gruenigen V, Waggoner S, Brindle J, Zhang Y, Myers B, et al. Cyberknife radiosurgery for squamous cell carcinoma of vulva after prior pelvic radiation therapy. Technol Cancer Res Treat. 2008;7(5):375–80.CrossRefGoogle Scholar
  49. 49.
    Feddock J, Aryal P, Wooten C, Randall M. Outpatient interstitial implants—integrating cesium-131 permanent interstitial brachytherapy into definitive treatment for gynecologic malignancies. Brachytherapy. 2016;15:S93–S4.CrossRefGoogle Scholar
  50. 50.
    Erickson B, Gillin MT. Interstitial implantation of gynecologic malignancies. J Surg Oncol. 1997;66(4):285–95.PubMedCrossRefGoogle Scholar
  51. 51.
    Syed AM, Puthawala AA, Abdelaziz NN, el-Naggar M, Disaia P, Berman M, et al. Long-term results of low-dose-rate interstitial-intracavitary brachytherapy in the treatment of carcinoma of the cervix. Int J Radiat Oncol Biol Phys. 2002;54(1):67–78.PubMedCrossRefGoogle Scholar
  52. 52.
    Cunningham J. In: Thomas C, editor. The physics of radiobiology. 4th ed. Springfield, IL: Thomas C; 1983.Google Scholar
  53. 53.
    Tod M, Meredith WJ. Treatment of cancer of the cervix uteri, a revised Manchester method. Br J Radiol. 1953;26(305):252–7.  https://doi.org/10.1259/0007-1285-26-305-252.PubMedCrossRefGoogle Scholar
  54. 54.
    Abbe R. The use of radium in malignant disease. Lancet. 1913;2:524–7.CrossRefGoogle Scholar
  55. 55.
    Lenz M. Radiotherapy of cancer of the cervix at the Radium Institute, Paris, France. Am J Roentgenol. 1927;17:335–42.Google Scholar
  56. 56.
    Tod MC, Meredith WJ. The optimum dosage system for use in the treatment of cancer of the uterine cervix. Br J Radiol. 1938;11:809–24.CrossRefGoogle Scholar
  57. 57.
    Demanes DJ, Rodriguez RR, Bendre DD, Ewing TL. High dose rate transperineal interstitial brachytherapy for cervical cancer: high pelvic control and low complication rates. Int J Radiat Oncol Biol Phys. 1999;45(1):105–12.PubMedCrossRefGoogle Scholar
  58. 58.
    Monk BJ, Tewari KS, Puthawala AA, Syed AM, Haugen JA, Burger RA. Treatment of recurrent gynecologic malignancies with iodine-125 permanent interstitial irradiation. Int J Radiat Oncol Biol Phys. 2002;52(3):806–15.PubMedCrossRefGoogle Scholar
  59. 59.
    Reed DR, Wallner KE, Merrick GS, Arthurs S, Mueller A, Cavanagh W, et al. A prospective randomized comparison of stranded vs. loose 125I seeds for prostate brachytherapy. Brachytherapy. 2007;6(2):129–34.  https://doi.org/10.1016/j.brachy.2007.01.003.PubMedCrossRefGoogle Scholar
  60. 60.
    Luo W, Molloy J, Aryal P, Feddock J, Randall M. Determination of prescription dose for Cs-131 permanent implants using the BED formalism including resensitization correction. Med Phys. 2014;41(2):024101.  https://doi.org/10.1118/1.4860255.PubMedCrossRefGoogle Scholar
  61. 61.
    Kunos CA, Brindle J, Waggoner S, Zanotti K, Resnick K, Fusco N, et al. Phase II clinical trial of robotic stereotactic body radiosurgery for metastatic gynecologic malignancies. Front Oncol. 2012;2:181.  https://doi.org/10.3389/fonc.2012.00181.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Kunos C, Chen W, DeBernardo R, Waggoner S, Brindle J, Zhang Y, et al. Stereotactic body radiosurgery for pelvic relapse of gynecologic malignancies. Technol Cancer Res Treat. 2009;8(5):393–400.CrossRefGoogle Scholar
  63. 63.
    Kunos C, Brindle JM, Debernardo R. Stereotactic radiosurgery for gynecologic cancer. J Vis Exp. 2012;(62).  https://doi.org/10.3791/3793.
  64. 64.
    Kunos CA, Debernardo R, Radivoyevitch T, Fabien J, Dobbins DC, Zhang Y, et al. Hematological toxicity after robotic stereotactic body radiosurgery for treatment of metastatic gynecologic malignancies. Int J Radiat Oncol Biol Phys. 2012;84(1):e35–41.  https://doi.org/10.1016/j.ijrobp.2012.02.027.PubMedCrossRefGoogle Scholar
  65. 65.
    Mislmani M, Frasure H, Suppiah S, Fabien J, Lo SS, Debernardo R, et al. Acute gastrointestinal toxicity after robotic stereotactic ablative radiotherapy for treatment of metastatic gynecological malignancies. Future Oncol. 2014;10(2):241–8.  https://doi.org/10.2217/fon.13.215.PubMedCrossRefGoogle Scholar
  66. 66.
    Kunos C, Shaffer H, Fabien J. Hybrid arc stereotactic ablative body radiation therapy for pelvic relapse of gynecologic malignancies. Obstet Gynecol Cases Rev. 2015;2:030.CrossRefGoogle Scholar
  67. 67.
    Kunos CA, Fabien JM, Shanahan JP, Collen C, Gevaert T, Poels K et al. Dynamic lung tumor tracking for stereotactic ablative body radiation therapy. J Vis Exp. 2015;100:e52875.  https://doi.org/10.3791/52875.
  68. 68.
    Choi CW, Cho CK, Yoo SY, Kim MS, Yang KM, Yoo HJ, et al. Image-guided stereotactic body radiation therapy in patients with isolated para-aortic lymph node metastases from uterine cervical and corpus cancer. Int J Radiat Oncol Biol Phys. 2009;74(1):147–53.  https://doi.org/10.1016/j.ijrobp.2008.07.020.CrossRefGoogle Scholar
  69. 69.
    Higginson DS, Morris DE, Jones EL, Clarke-Pearson D, Varia MA. Stereotactic body radiotherapy (SBRT): technological innovation and application in gynecologic oncology. Gynecol Oncol. 2011;120(3):404–12.  https://doi.org/10.1016/j.ygyno.2010.11.042.PubMedCrossRefGoogle Scholar
  70. 70.
    Park HJ, Chang AR, Seo Y, Cho CK, Jang WI, Kim MS, et al. Stereotactic body radiotherapy for recurrent or oligometastatic uterine cervix cancer: a cooperative study of the Korean radiation oncology group (KROG 14-11). Anticancer Res. 2015;35(9):5103–10.Google Scholar
  71. 71.
    Seo YS, Kim MS, Cho CK, Yoo HJ, Jang WI, Kim KB, et al. Stereotactic body radiotherapy for oligometastases confined to the para-aortic region: clinical outcomes and the significance of radiotherapy field and dose. Cancer Investig. 2015;33(5):180–7.  https://doi.org/10.3109/07357907.2015.1019678.CrossRefGoogle Scholar
  72. 72.
    Seo Y, Kim MS, Yoo HJ, Jang WI, Rhu SY, Choi SC, et al. Salvage stereotactic body radiotherapy for locally recurrent uterine cervix cancer at the pelvic sidewall: feasibility and complication. Asia Pac J Clin Oncol. 2016;12(2):e280–8.  https://doi.org/10.1111/ajco.12185.PubMedCrossRefGoogle Scholar
  73. 73.
    Barraclough LH, Swindell R, Livsey JE, Hunter RD, Davidson SE. External beam boost for cancer of the cervix uteri when intracavitary therapy cannot be performed. Int J Radiat Oncol Biol Phys. 2008;71(3):772–8.  https://doi.org/10.1016/j.ijrobp.2007.10.066.PubMedCrossRefGoogle Scholar
  74. 74.
    Swamidas VJ, Mahantshetty U, Vineeta G, Engineer R, Deshpande DD, Sarin R, et al. Treatment planning of epithelial ovarian cancers using helical tomotherapy. J Appl Clin Med Phys. 2009;10(4):3003.PubMedGoogle Scholar
  75. 75.
    Hsieh CH, Tien HJ, Hsiao SM, Wei MC, Wu WY, Sun HD, et al. Stereotactic body radiation therapy via helical tomotherapy to replace brachytherapy for brachytherapy-unsuitable cervical cancer patients—a preliminary result. Onco Targets Ther. 2013;6:59–66.  https://doi.org/10.2147/ott.s40370.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Jones R, Chen Q, Best R, Libby B, Crandley EF, Showalter TN. Dosimetric feasibility of stereotactic body radiation therapy as an alternative to brachytherapy for definitive treatment of medically inoperable early stage endometrial cancer. Radiat Oncol. 2014;9:164.  https://doi.org/10.1186/1748-717x-9-164.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Molla M, Escude L, Nouet P, Popowski Y, Hidalgo A, Rouzaud M, et al. Fractionated stereotactic radiotherapy boost for gynecologic tumors: an alternative to brachytherapy? Int J Radiat Oncol Biol Phys. 2005;62(1):118–24.  https://doi.org/10.1016/j.ijrobp.2004.09.028.PubMedCrossRefGoogle Scholar
  78. 78.
    Jorcano S, Molla M, Escude L, Sanz S, Hidalgo A, Toscas JI, et al. Hypofractionated extracranial stereotactic radiotherapy boost for gynecologic tumors: a promising alternative to high-dose rate brachytherapy. Technol Cancer Res Treat. 2010;9(5):509–14.PubMedCrossRefGoogle Scholar
  79. 79.
    Deodato F, Macchia G, Grimaldi L, Ferrandina G, Lorusso D, Salutari V, et al. Stereotactic radiotherapy in recurrent gynecological cancer: a case series. Oncol Rep. 2009;22(2):415–9.PubMedGoogle Scholar
  80. 80.
    Guckenberger M, Bachmann J, Wulf J, Mueller G, Krieger T, Baier K, et al. Stereotactic body radiotherapy for local boost irradiation in unfavourable locally recurrent gynaecological cancer. Radiother Oncol. 2010;94(1):53–9.  https://doi.org/10.1016/j.radonc.2009.12.004.PubMedCrossRefGoogle Scholar
  81. 81.
    Kemmerer E, Hernandez E, Ferriss JS, Valakh V, Miyamoto C, Li S, et al. Use of image-guided stereotactic body radiation therapy in lieu of intracavitary brachytherapy for the treatment of inoperable endometrial neoplasia. Int J Radiat Oncol Biol Phys. 2013;85(1):129–35.  https://doi.org/10.1016/j.ijrobp.2012.02.058.PubMedCrossRefGoogle Scholar
  82. 82.
    Demiral S, Beyzadeoglu M, Uysal B, Oysul K, Kahya YE, Sager O, et al. Evaluation of stereotactic body radiotherapy (SBRT) boost in the management of endometrial cancer. Neoplasma. 2013;60(3):322–7.  https://doi.org/10.4149/neo_2013_043.PubMedCrossRefGoogle Scholar
  83. 83.
    Mesko S, Sandler K, Cohen J, Konecny G, Steinberg M, Kamrava M. Clinical outcomes for stereotactic ablative radiotherapy in oligometastatic and oligoprogressive gynecological malignancies. Int J Gynecol Cancer. 2016.  https://doi.org/10.1097/igc.0000000000000869.PubMedCrossRefGoogle Scholar
  84. 84.
    Depuydt T, Penne R, Verellen D, Hrbacek J, Lang S, Leysen K, et al. Computer-aided analysis of star shot films for high-accuracy radiation therapy treatment units. Phys Med Biol. 2012;57(10):2997–3011.  https://doi.org/10.1088/0031-9155/57/10/2997.PubMedCrossRefGoogle Scholar
  85. 85.
    Wilcox EE, Daskalov GM. Evaluation of GAFCHROMIC EBT film for Cyberknife dosimetry. Med Phys. 2007;34(6):1967–74.  https://doi.org/10.1118/1.2734384.PubMedCrossRefGoogle Scholar
  86. 86.
    Antypas C, Pantelis E. Performance evaluation of a CyberKnife G4 image-guided robotic stereotactic radiosurgery system. Phys Med Biol. 2008;53(17):4697–718.  https://doi.org/10.1088/0031-9155/53/17/016.PubMedCrossRefGoogle Scholar
  87. 87.
    Mackie TR, Holmes T, Swerdloff S, Reckwerdt P, Deasy JO, Yang J, et al. Tomotherapy: a new concept for the delivery of dynamic conformal radiotherapy. Med Phys. 1993;20(6):1709–19.  https://doi.org/10.1118/1.596958.PubMedCrossRefGoogle Scholar
  88. 88.
    Warren W, Grant WH, Teh B. Helical tomotherapy system. In: Lo S, Teh B, Lu J, Schefter T, editors. Stereotactic body radiation therapy. New York, NY: Springer; 2012. p. 67–77.CrossRefGoogle Scholar
  89. 89.
    Kim J, Jin JY, Walls N, Nurushev T, Movsas B, Chetty IJ, et al. Image-guided localization accuracy of stereoscopic planar and volumetric imaging methods for stereotactic radiation surgery and stereotactic body radiation therapy: a phantom study. Int J Radiat Oncol Biol Phys. 2011;79(5):1588–96.  https://doi.org/10.1016/j.ijrobp.2010.05.052.PubMedCrossRefGoogle Scholar
  90. 90.
    Kunos CA, Sherertz TM, Mislmani M, Ellis RJ, Lo SS, Waggoner SE, et al. Phase I trial of carboplatin and gemcitabine chemotherapy and stereotactic ablative radiosurgery for the palliative treatment of persistent or recurrent gynecologic cancer. Front Oncol. 2015;5:126.  https://doi.org/10.3389/fonc.2015.00126.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Kunos C, Brindle JM, Debernardo R. Stereotactic radiosurgery for gynecologic cancer. J Vis Exp. 2012;62:e3793.  https://doi.org/10.3791/3793.
  92. 92.
    Mendez LC, Leung E, Cheung P, Barbera L. The role of stereotactic ablative body radiotherapy in gynaecological cancers: a systematic review. Clin Oncol (R Coll Radiol). 2017;29(6):378–84.  https://doi.org/10.1016/j.clon.2017.01.009.CrossRefGoogle Scholar
  93. 93.
    Leung EW, Gladwish A, Sahgal A, Lo SS, Kunos CA, Lanciano RM, et al. An international radiosurgery consortium survey for gynecological stereotactic ablative radiation therapy. Int J Radiat Oncol Biol Phys. 2017;99(2):E300.  https://doi.org/10.1016/j.ijrobp.2017.06.1320.CrossRefGoogle Scholar
  94. 94.
    Milby AB, Both S, Ingram M, Lin LL. Dosimetric comparison of combined intensity-modulated radiotherapy (IMRT) and proton therapy versus IMRT alone for pelvic and para-aortic radiotherapy in gynecologic malignancies. Int J Radiat Oncol Biol Phys. 2012;82(3):e477–84.  https://doi.org/10.1016/j.ijrobp.2011.07.012.PubMedCrossRefGoogle Scholar
  95. 95.
    Chera BS, Vargas C, Morris CG, Louis D, Flampouri S, Yeung D, et al. Dosimetric study of pelvic proton radiotherapy for high-risk prostate cancer. Int J Radiat Oncol Biol Phys. 2009;75(4):994–1002.  https://doi.org/10.1016/j.ijrobp.2009.01.044.PubMedCrossRefGoogle Scholar
  96. 96.
    Lin LL, Kirk M, Scholey J, Taku N, Kiely JB, White B, et al. Initial report of pencil beam scanning proton therapy for posthysterectomy patients with gynecologic cancer. Int J Radiat Oncol Biol Phys. 2016;95(1):181–9.  https://doi.org/10.1016/j.ijrobp.2015.07.2205.PubMedCrossRefGoogle Scholar
  97. 97.
    Clivio A, Kluge A, Cozzi L, Kohler C, Neumann O, Vanetti E, et al. Intensity modulated proton beam radiation for brachytherapy in patients with cervical carcinoma. Int J Radiat Oncol Biol Phys. 2013;87(5):897–903.  https://doi.org/10.1016/j.ijrobp.2013.08.027.PubMedCrossRefGoogle Scholar
  98. 98.
    Arnesen MR, Rekstad BL, Stokke C, Bruheim K, Londalen AM, Hellebust TP, et al. Short-course PET based simultaneous integrated boost for locally advanced cervical cancer. Radiat Oncol. 2016;11:39.  https://doi.org/10.1186/s13014-016-0612-z.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Hashimoto S, Shibamoto Y, Iwata H, Ogino H, Shibata H, Toshito T, et al. Whole-pelvic radiotherapy with spot-scanning proton beams for uterine cervical cancer: a planning study. J Radiat Res. 2016;57(5):524–32.  https://doi.org/10.1093/jrr/rrw052.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Nakano T, Kato S, Ohno T, Tsujii H, Sato S, Fukuhisa K, et al. Long-term results of high-dose rate intracavitary brachytherapy for squamous cell carcinoma of the uterine cervix. Cancer. 2005;103(1):92–101.  https://doi.org/10.1002/cncr.20734.PubMedCrossRefGoogle Scholar
  101. 101.
    Eifel PJ, Winter K, Morris M, Levenback C, Grigsby PW, Cooper J, et al. Pelvic irradiation with concurrent chemotherapy versus pelvic and para-aortic irradiation for high-risk cervical cancer: an update of radiation therapy oncology group trial (RTOG) 90-01. J Clin Oncol. 2004;22(5):872–80.  https://doi.org/10.1200/Jco.2004.07.197.CrossRefGoogle Scholar
  102. 102.
    Rose PG, Ali S, Watkins E, Thigpen JT, Deppe G, Clarke-Pearson DL, et al. Long-term follow-up of a randomized trial comparing concurrent single agent cisplatin, cisplatin-based combination chemotherapy, or hydroxyurea during pelvic irradiation for locally advanced cervical cancer: a Gynecologic Oncology Group Study. J Clin Oncol. 2007;25(19):2804–10.  https://doi.org/10.1200/Jco.2006.09.4532.PubMedCrossRefGoogle Scholar
  103. 103.
    Vale C, Tierney JF, Stewart LA, Brady M, Dinshaw K, Jakobsen A, et al. Reducing uncertainties about the effects of chemoradiotherapy for cervical cancer: a systematic review and meta-analysis of individual patient data from 18 randomized trials. J Clin Oncol. 2008;26(35):5802–12.  https://doi.org/10.1200/Jco.2008.16.4368.CrossRefGoogle Scholar
  104. 104.
    Gien LT, Beauchemin MC, Thomas G. Adenocarcinoma: a unique cervical cancer. Gynecol Oncol. 2010;116(1):140–6.  https://doi.org/10.1016/j.ygyno.2009.09.040.PubMedCrossRefGoogle Scholar
  105. 105.
    Grigsby PW, Perez CA, Kuske RR, Camel HM, Kao MS, Galakatos AE, et al. Adenocarcinoma of the uterine cervix - lack of evidence for a poor prognosis. Radiother Oncol. 1988;12(4):289–96.  https://doi.org/10.1016/0167-8140(88)90018-7.PubMedCrossRefGoogle Scholar
  106. 106.
    Kanai T, Endo M, Minohara S, Miyahara N, Koyama-Ito H, Tomura H, et al. Biophysical characteristics of HIMAC clinical irradiation system for heavy-ion radiation therapy. Int J Radiat Oncol Biol Phys. 1999;44(1):201–10.  https://doi.org/10.1016/S0360-3016(98)00544-6.PubMedCrossRefGoogle Scholar
  107. 107.
    Kanai T, Furusawa Y, Fukutsu K, Itsukaichi H, EguchiKasai K, Ohara H. Irradiation of mixed beam and design of spread-out Bragg peak for heavy-ion radiotherapy. Radiat Res. 1997;147(1):78–85.  https://doi.org/10.2307/3579446.PubMedCrossRefGoogle Scholar
  108. 108.
    Kato S, Ohno T, Tsujii H, Nakano T, Mizoe JE, Kamada T, et al. Dose escalation study of carbon ion radiotherapy for locally advanced carcinoma of the uterine cervix. Int J Radiat Oncol Biol Phys. 2006;65(2):388–97.  https://doi.org/10.1016/j.jrobp.2005.12.050.PubMedCrossRefGoogle Scholar
  109. 109.
    Ando K, Koike S, Nojima K, Chen YJ, Ohira C, Ando S, et al. Mouse skin reactions following fractionated irradiation with carbon ions. Int J Radiat Biol. 1998;74(1):129–38.  https://doi.org/10.1080/095530098141799.PubMedCrossRefGoogle Scholar
  110. 110.
    Endo M, Koyama-Ito H, Minohara S. HIPLAN. A heavy ion treatment planning system at HIMAC. J Jpn Soc Ther Radiol Oncol. 1996;8:231–8.Google Scholar
  111. 111.
    Lim K, Small W, Portelance L, Creutzberg C, Jurgenliemk-Schulz IM, Mundt A, et al. Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy for the definitive treatment of cervix cancer. Int J Radiat Oncol Biol Phys. 2011;79(2):348–55.  https://doi.org/10.1016/j.ijrobp.2009.10.075.CrossRefGoogle Scholar
  112. 112.
    Small W, Winter K, Levenback C, Iyer R, Gaffney D, Asbell S, et al. Extended-field irradiation and intracavitary brachytherapy combined with cisplatin chemotherapy for cervical cancer with positive para-aortic or high common iliac lymph nodes: results of ARM 1 of RTOG 0116. Int J Radiat Oncol Biol Phys. 2007;68(4):1081–7.  https://doi.org/10.1016/j.ijrobp.2007.01.026.PubMedCrossRefGoogle Scholar
  113. 113.
    Taylor A, Rockall AG, Reznek RH, Powell MEB. Mapping pelvic lymph nodes: guidelines for delineation in intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2005;63(5):1604–12.  https://doi.org/10.1016/j.ijrobp.2005.05.062.CrossRefGoogle Scholar
  114. 114.
    Toita T, Ohno T, Kaneyasu Y, Uno T, Yoshimura R, Kodaira T, et al. A consensus-based guideline defining the clinical target volume for pelvic lymph nodes in external beam radiotherapy for uterine cervical cancer. Jpn J Clin Oncol. 2010;40(5):456–63.  https://doi.org/10.1093/jjco/hyp191.PubMedCrossRefGoogle Scholar
  115. 115.
    Wakatsuki M, Kato S, Ohno T, Karasawa K, Ando K, Kiyohara H, et al. Dose-escalation study of carbon ion radiotherapy for locally advanced squamous cell carcinoma of the uterine cervix (9902). Gynecol Oncol. 2014;132(1):87–92.  https://doi.org/10.1016/j.ygyno.2013.10.021.PubMedCrossRefGoogle Scholar
  116. 116.
    Girinsky T, Rey A, Roche B, Haie C, Gerbaulet A, Randrianarivello H, et al. Overall treatment time in advanced cervical carcinomas - a critical parameter in treatment outcome. Int J Radiat Oncol Biol Phys. 1993;27(5):1051–6.PubMedCrossRefGoogle Scholar
  117. 117.
    Perez CA, Grigsby PW, CastroVita H, Lockett MA. Carcinoma of the uterine cervix. II. Lack of impact of prolongation of overall treatment time on morbidity of radiation therapy. Int J Radiat Oncol Biol Phys. 1996;34(1):3–11.  https://doi.org/10.1016/0360-3016(95)00169-7.PubMedCrossRefGoogle Scholar
  118. 118.
    Toita T, Kitagawa R, Hamano T, Umayahara K, Hirashima Y, Aoki Y, et al. Phase II study of concurrent chemoradiotherapy with high-dose-rate intracavitary brachytherapy in patients with locally advanced uterine cervical cancer: efficacy and toxicity of a low cumulative radiation dose schedule. Gynecol Oncol. 2012;126(2):211–6.  https://doi.org/10.1016/j.ygyno.2012.04.036.PubMedCrossRefGoogle Scholar
  119. 119.
    Kodaira T, Fuwa N, Toita T, Nomoto Y, Kuzuya K, Tachibana K, et al. Clinical evaluation using magnetic resonance imaging for patients with stage III cervical carcinoma treated by radiation alone in multicenter analysis—its usefulness and limitations in clinical practice. Am J Clin Oncol. 2003;26(6):574–83.  https://doi.org/10.1097/01.coc.0000045811.97903.2A.PubMedCrossRefGoogle Scholar
  120. 120.
    Wakatsuki M, Kato S, Kiyohara H, Ohno T, Karasawa K, Tamaki T, et al. Clinical trial of prophylactic extended-field carbon-ion radiotherapy for locally advanced uterine cervical cancer (protocol 0508). PLos One. 2015;10(11):e0143301.  https://doi.org/10.1371/journal.pone.0143301.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Berman ML, Keys H, Creasman W, Disaia P, Bundy B, Blessing J. Survival and patterns of recurrence in cervical-cancer metastatic to periaortic lymph-nodes—(a Gynecologic Oncology Group-Study). Gynecol Oncol. 1984;19(1):8–16.  https://doi.org/10.1016/0090-8258(84)90151-3.PubMedCrossRefGoogle Scholar
  122. 122.
    Gouy S, Morice P, Narducci F, Uzan C, Gilmore J, Kolesnikov-Gauthier H, et al. Nodal-staging surgery for locally advanced cervical cancer in the era of PET. Lancet Oncol. 2012;13(5):E212–E20.PubMedCrossRefGoogle Scholar
  123. 123.
    Nelson JH, Boyce J, Macasaet M, Lu T, Bohorquez JF, Nicastri AD, et al. Incidence, significance, and follow-up of para-aortic lymph-node metastases in late invasive carcinoma of cervix. Am J Obstet Gynecol. 1977;128(3):336–40.PubMedCrossRefGoogle Scholar
  124. 124.
    Haie C, Pejovic MH, Gerbaulet A, Horiot JC, Pourquier H, Delouche J, et al. Is prophylactic para-aortic irradiation worthwhile in the treatment of advanced cervical-carcinoma - results of a controlled clinical-trial of the EORTC radiotherapy group. Radiother Oncol. 1988;11(2):101–12.  https://doi.org/10.1016/0167-8140(88)90245-9.PubMedCrossRefGoogle Scholar
  125. 125.
    Rotman M, Pajak TF, Choi K, Clery M, Marcial V, Grigsby PW, et al. Prophylactic extended-field irradiation of paraaortic lymph-nodes in stage-IIB and bulky stage-IB and stage-IIA cervical carcinomas - 10-year treatment results of RTOG-79-20. J Am Med Assoc. 1995;274(5):387–93.  https://doi.org/10.1001/jama.274.5.387.CrossRefGoogle Scholar
  126. 126.
    Grigsby PW, Heydon K, Mutch DG, Kim RY, Eifel P. Long-term follow-up of RTOG 92-10: cervical cancer with positive para-aortic lymph nodes. Int J Radiat Oncol Biol Phys. 2001;51(4):982–7.  https://doi.org/10.1016/S0360-3016(01)01723-0.PubMedCrossRefGoogle Scholar
  127. 127.
    Varia MA, Bundy BN, Deppe G, Mannel R, Averette HE, Rose PG, et al. Cervical carcinoma metastatic to para-aortic nodes: extended field radiation therapy with concomitant 5-fluorouracil and cisplatin chemotherapy: a Gynecologic Oncology Group Study. Int J Radiat Oncol Biol Phys. 1998;42(5):1015–23.  https://doi.org/10.1016/S0360-3016(98)00267-3.PubMedCrossRefGoogle Scholar
  128. 128.
    Wakatsuki M, Kato S, Ohno T, Karasawa K, Kiyohara H, Tamaki T, et al. Clinical outcomes of carbon ion radiotherapy for locally advanced adenocarcinoma of the uterine cervix in phase 1/2 clinical trial (protocol 9704). Cancer. 2014;120(11):1663–9.  https://doi.org/10.1002/cncr.28621.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Radiation OncologyBaptist Health Cancer CenterLexingtonUSA
  2. 2.Cancer Therapy Evaluation ProgramNational Cancer InstituteRockvilleUSA
  3. 3.Department of Radiation OncologyUniversity of Texas-SouthwesternDallasUSA
  4. 4.Department of Radiation OncologyUniversity of Texas, MD Anderson Cancer CenterHoustonUSA

Personalised recommendations