Skip to main content

CT and MRI Simulation for Radiation Planning

  • Chapter
  • First Online:
Book cover Radiation Therapy Techniques for Gynecological Cancers

Part of the book series: Practical Guides in Radiation Oncology ((PGRO))

  • 1202 Accesses

Abstract

Simulation of the gynecologic cancer patient is a critical step in order to generate a high-quality radiation plan. Consideration must be given to not only the target area and nearby organs at risk but also the characteristics of the patient and the anticipated treatment machine’s capabilities and limitations. The degree of immobilization, reproducibility of setup, the ability to track organ motion, onboard imaging capabilities, patient body habitus, and overall patient health must all be considered. Below, we discuss these aspects of planning and review several techniques and devices that can be used for challenging clinical scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grover S, Harkenrider MM, Cho LP, Erickson B, Small C, Small W Jr, et al. Image guided cervical brachytherapy: 2014 survey of the American Brachytherapy Society. Int J Radiat Oncol Biol Phys. 2016;94(3):598–604. https://doi.org/10.1016/j.ijrobp.2015.11.024.

    Article  PubMed  Google Scholar 

  2. Somigliana A, Zonca G, Loi G, Sichirollo AE. How thick should CT/MR slices be to plan conformal radiotherapy? A study on the accuracy of three-dimensional volume reconstruction. Tumori. 1996;82(5):470–2.

    Article  CAS  Google Scholar 

  3. Joseph K, Liu D, Severin D, Dickey M, Polkosnik LA, Warkentin H, et al. Dosimetric effect of small bowel oral contrast on conventional radiation therapy, linear accelerator-based intensity modulated radiation therapy, and helical tomotherapy plans for rectal cancer. Pract Radiat Oncol. 2015;5(2):e95–102. https://doi.org/10.1016/j.prro.2014.07.004.

    Article  PubMed  Google Scholar 

  4. Yang RJ, Wang WB, Zhang Y. Effect of intravenous contrast agent on dose distribution in treatment planning for postoperative whole pelvic radiotherapy of gynecologic cancer. J Pract Oncol. 2010;3:20.

    Google Scholar 

  5. Tsai CC, Tsai CS, Ng KK, Lai CH, Hsueh S, Kao PF, et al. The impact of image fusion in resolving discrepant findings between FDG-PET and MRI/CT in patients with gynaecological cancers. Eur J Nucl Med Mol Imaging. 2003;30(12):1674–83. https://doi.org/10.1007/s00259-003-1300-4.

    Article  PubMed  Google Scholar 

  6. Heron DE, Andrade RS, Flickinger J, Johnson J, Agarwala SS, Wu A, et al. Hybrid PET-CT simulation for radiation treatment planning in head-and-neck cancers: a brief technical report. Int J Radiat Oncol Biol Phys. 2004;60(5):1419–24. https://doi.org/10.1016/j.ijrobp.2004.05.037.

    Article  PubMed  Google Scholar 

  7. Terezakis SA, Hunt MA, Kowalski A, McCann P, Schmidtlein CR, Reiner A, et al. [(1)(8)F]FDG-positron emission tomography coregistration with computed tomography scans for radiation treatment planning of lymphoma and hematologic malignancies. Int J Radiat Oncol Biol Phys. 2011;81(3):615–22. https://doi.org/10.1016/j.ijrobp.2010.06.044.

    Article  PubMed  Google Scholar 

  8. Das IJ, Lanciano RM, Movsas B, Kagawa K, Barnes SJ. Efficacy of a belly board device with CT-simulation in reducing small bowel volume within pelvic irradiation fields. Int J Radiat Oncol Biol Phys. 1997;39(1):67–76.

    Article  CAS  Google Scholar 

  9. Estabrook NC, Bartlett GK, Compton JJ, Cardenes HR, Das IJ. Role of belly board device in the age of intensity modulated radiotherapy for pelvic irradiation. Med Dosim. 2016;41(4):300–4. https://doi.org/10.1016/j.meddos.2016.07.002.

    Article  PubMed  Google Scholar 

  10. Froseth TC, Strickert T, Solli KS, Salvesen O, Frykholm G, Reidunsdatter RJ. A randomized study of the effect of patient positioning on setup reproducibility and dose distribution to organs at risk in radiotherapy of rectal cancer patients. Radiat Oncol. 2015;10:217. https://doi.org/10.1186/s13014-015-0524-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhao H, Wang B, Sarkar V, Rassiah-Szegedi P, Huang YJ, Szegedi M, et al. Comparison of surface matching and target matching for image-guided pelvic radiation therapy for both supine and prone patient positions. J Appl Clin Med Phys. 2016;17(3):14–24. https://doi.org/10.1120/jacmp.v17i3.5611.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Stromberger C, Kom Y, Kawgan-Kagan M, Mensing T, Jahn U, Schneider A, et al. Intensity-modulated radiotherapy in patients with cervical cancer. An intra-individual comparison of prone and supine positioning. Radiat Oncol. 2010;5:63. https://doi.org/10.1186/1748-717X-5-63.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Townamchai K, Poorvu PD, Damato AL, DeMaria R, Lee LJ, Berlin S, et al. Radiation dose escalation using intensity modulated radiation therapy for gross unresected node-positive endometrial cancer. Pract Radiat Oncol. 2014;4(2):90–8. https://doi.org/10.1016/j.prro.2013.07.002.

    Article  PubMed  Google Scholar 

  14. Taku N, Dise J, Kenton O, Yin L, Teo BK, Lin LL. Quantification of vaginal motion associated with daily endorectal balloon placement during whole pelvis radiotherapy for gynecologic cancers. Radiother Oncol. 2016;120(3):532–6. https://doi.org/10.1016/j.radonc.2016.05.005.

    Article  PubMed  Google Scholar 

  15. van de Bunt L, Jurgenliemk-Schulz IM, de Kort GA, Roesink JM, Tersteeg RJ, van der Heide UA. Motion and deformation of the target volumes during IMRT for cervical cancer: what margins do we need? Radiother Oncol. 2008;88(2):233–40. https://doi.org/10.1016/j.radonc.2007.12.017.

    Article  PubMed  Google Scholar 

  16. Huh SJ, Park W, Han Y. Interfractional variation in position of the uterus during radical radiotherapy for cervical cancer. Radiother Oncol. 2004;71(1):73–9. https://doi.org/10.1016/j.radonc.2004.01.005.

    Article  PubMed  Google Scholar 

  17. Eminowicz G, Motlib J, Khan S, Perna C, McCormack M. Pelvic organ motion during radiotherapy for cervical cancer: understanding patterns and recommended patient preparation. Clin Oncol. 2016;28(9):e85–91. https://doi.org/10.1016/j.clon.2016.04.044.

    Article  CAS  Google Scholar 

  18. Eminowicz G, Rompokos V, Stacey C, Hall L, McCormack M. Understanding the impact of pelvic organ motion on dose delivered to target volumes during IMRT for cervical cancer. Radiother Oncol. 2017;122(1):116–21. https://doi.org/10.1016/j.radonc.2016.10.018.

    Article  PubMed  Google Scholar 

  19. Murakami N, Norihisa Y, Isohashi F, Murofushi K, Ariga T, Kato T, et al. Proposed definition of the vaginal cuff and paracolpium clinical target volume in postoperative uterine cervical cancer. Pract Radiat Oncol. 2016;6(1):5–11. https://doi.org/10.1016/j.prro.2015.04.008.

    Article  PubMed  Google Scholar 

  20. Michaud AL, Benedict S, Montemayor E, Hunt JP, Wright C, Mathai M, et al. Workflow efficiency for the treatment planning process in CT-guided high-dose-rate brachytherapy for cervical cancer. Brachytherapy. 2016;15(5):578–83. https://doi.org/10.1016/j.brachy.2016.06.001.

    Article  PubMed  Google Scholar 

  21. Hellebust TP, Kirisits C, Berger D, Perez-Calatayud J, De Brabandere M, De Leeuw A, et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group: considerations and pitfalls in commissioning and applicator reconstruction in 3D image-based treatment planning of cervix cancer brachytherapy. Radiother Oncol. 2010;96(2):153–60. https://doi.org/10.1016/j.radonc.2010.06.004.

    Article  PubMed  Google Scholar 

  22. Potter R, Dimopoulos J, Georg P, Lang S, Waldhausl C, Wachter-Gerstner N, et al. Clinical impact of MRI assisted dose volume adaptation and dose escalation in brachytherapy of locally advanced cervix cancer. Radiother Oncol. 2007;83(2):148–55. https://doi.org/10.1016/j.radonc.2007.04.012.

    Article  PubMed  Google Scholar 

  23. Jurgenliemk-Schulz IM, Tersteeg RJ, Roesink JM, Bijmolt S, Nomden CN, Moerland MA, et al. MRI-guided treatment-planning optimisation in intracavitary or combined intracavitary/interstitial PDR brachytherapy using tandem ovoid applicators in locally advanced cervical cancer. Radiother Oncol. 2009;93(2):322–30. https://doi.org/10.1016/j.radonc.2009.08.014.

    Article  PubMed  Google Scholar 

  24. Tanderup K, Nielsen SK, Nyvang GB, Pedersen EM, Rohl L, Aagaard T, et al. From point A to the sculpted pear: MR image guidance significantly improves tumour dose and sparing of organs at risk in brachytherapy of cervical cancer. Radiother Oncol. 2010;94(2):173–80. https://doi.org/10.1016/j.radonc.2010.01.001.

    Article  PubMed  Google Scholar 

  25. Potter R, Georg P, Dimopoulos JC, Grimm M, Berger D, Nesvacil N, et al. Clinical outcome of protocol based image (MRI) guided adaptive brachytherapy combined with 3D conformal radiotherapy with or without chemotherapy in patients with locally advanced cervical cancer. Radiother Oncol. 2011;100(1):116–23. https://doi.org/10.1016/j.radonc.2011.07.012.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ho JC, Allen PK, Bhosale PR, Rauch GM, Fuller CD, Mohamed AS, et al. Diffusion-weighted magnetic resonance imaging as a predictor of outcome in cervical cancer after chemoradiation. Int J Radiat Oncol Biol Phys. 2017;97(3):546–53. https://doi.org/10.1016/j.ijrobp.2016.11.015.

    Article  PubMed  Google Scholar 

  27. Gladwish A, Milosevic M, Fyles A, Xie J, Halankar J, Metser U, et al. Association of apparent diffusion coefficient with disease recurrence in patients with locally advanced cervical cancer treated with radical chemotherapy and radiation therapy. Radiology. 2016;279(1):158–66. https://doi.org/10.1148/radiol.2015150400.

    Article  PubMed  Google Scholar 

  28. Owrangi AM, Jolly S, Balter JM, Cao Y, Maturen KE, Young L, et al. Clinical implementation of MR-guided vaginal cylinder brachytherapy. J Appl Clin Med Phys. 2015;16(6):490–500. https://doi.org/10.1120/jacmp.v16i6.5460.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chapman CH, Prisciandaro JI, Maturen KE, Cao Y, Balter JM, McLean K, et al. MRI-based evaluation of the vaginal cuff in brachytherapy planning: are we missing the target? Int J Radiat Oncol Biol Phys. 2016;95(2):743–50. https://doi.org/10.1016/j.ijrobp.2016.01.042.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Khoo VS, Dearnaley DP, Finnigan DJ, Padhani A, Tanner SF, Leach MO. Magnetic resonance imaging (MRI): considerations and applications in radiotherapy treatment planning. Radiother Oncol. 1997;42(1):1–15.

    Article  CAS  Google Scholar 

  31. Liu L, Cao Y, Fessler JA, Jolly S, Balter JM. A female pelvic bone shape model for air/bone separation in support of synthetic CT generation for radiation therapy. Phys Med Biol. 2016;61(1):169–82. https://doi.org/10.1088/0031-9155/61/1/169.

    Article  PubMed  Google Scholar 

  32. Dimopoulos JC, Petrow P, Tanderup K, Petric P, Berger D, Kirisits C, et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (IV): basic principles and parameters for MR imaging within the frame of image based adaptive cervix cancer brachytherapy. Radiother Oncol. 2012;103(1):113–22. https://doi.org/10.1016/j.radonc.2011.12.024.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kim Y, Muruganandham M, Modrick JM, Bayouth JE. Evaluation of artifacts and distortions of titanium applicators on 3.0-Tesla MRI: feasibility of titanium applicators in MRI-guided brachytherapy for gynecological cancer. Int J Radiat Oncol Biol Phys. 2011;80(3):947–55. https://doi.org/10.1016/j.ijrobp.2010.07.1981.

    Article  PubMed  Google Scholar 

  34. Narayan K, Barkati M, van Dyk S, Bernshaw D. Image-guided brachytherapy for cervix cancer: from Manchester to Melbourne. Expert Rev Anticancer Ther. 2010;10(1):41–6. https://doi.org/10.1586/era.09.166.

    Article  PubMed  Google Scholar 

  35. Beriwal S, Demanes DJ, Erickson B, Jones E, De Los Santos JF, Cormack RA, et al. American Brachytherapy Society consensus guidelines for interstitial brachytherapy for vaginal cancer. Brachytherapy. 2012;11(1):68–75. https://doi.org/10.1016/j.brachy.2011.06.008.

    Article  PubMed  Google Scholar 

  36. Expert Panel on MRS, Kanal E, Barkovich AJ, Bell C, Borgstede JP, Bradley WG Jr, et al. ACR guidance document on MR safe practices: 2013. J Magn Reson Imaging. 2013;37(3):501–30. https://doi.org/10.1002/jmri.24011.

    Article  Google Scholar 

  37. Fisher CM, Fortenberry BR, Jhingran A, Eifel PJ. Novel technique for simulation and external beam treatment planning for obese patients. Pract Radiat Oncol. 2011;1(3):152–5. https://doi.org/10.1016/j.prro.2011.01.002.

    Article  PubMed  Google Scholar 

  38. Whitley AC, Prendergast BM, Kim RY. Novel setup techniques for radiation treatment of severely obese patients with cervical cancer. Pract Radiat Oncol. 2012;2(4):e107–12. https://doi.org/10.1016/j.prro.2011.11.011.

    Article  PubMed  Google Scholar 

  39. Kunos C, Chen W, DeBernardo R, Waggoner S, Brindle J, Zhang Y, et al. Stereotactic body radiosurgery for pelvic relapse of gynecologic malignancies. Technol Cancer Res Treat. 2009;8(5):393–400. https://doi.org/10.1177/153303460900800510.

    Article  PubMed  Google Scholar 

  40. Kunos C, von Gruenigen V, Waggoner S, Brindle J, Zhang Y, Myers B, et al. Cyberknife radiosurgery for squamous cell carcinoma of vulva after prior pelvic radiation therapy. Technol Cancer Res Treat. 2008;7(5):375–80. https://doi.org/10.1177/153303460800700504.

    Article  PubMed  Google Scholar 

  41. Choi CW, Cho CK, Yoo SY, Kim MS, Yang KM, Yoo HJ, et al. Image-guided stereotactic body radiation therapy in patients with isolated para-aortic lymph node metastases from uterine cervical and corpus cancer. Int J Radiat Oncol Biol Phys. 2009;74(1):147–53. https://doi.org/10.1016/j.ijrobp.2008.07.020.

    Article  PubMed  Google Scholar 

  42. Park HJ, Chang AR, Seo Y, Cho CK, Jang WI, Kim MS, et al. Stereotactic body radiotherapy for recurrent or oligometastatic uterine cervix cancer: a cooperative study of the Korean Radiation Oncology Group (KROG 14-11). Anticancer Res. 2015;35(9):5103–10.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diandra N. Ayala-Peacock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ayala-Peacock, D.N., Jolly, S., Amarnath, S., Albuquerque, K. (2019). CT and MRI Simulation for Radiation Planning. In: Albuquerque, K., Beriwal, S., Viswanathan, A., Erickson, B. (eds) Radiation Therapy Techniques for Gynecological Cancers. Practical Guides in Radiation Oncology. Springer, Cham. https://doi.org/10.1007/978-3-030-01443-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01443-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01442-1

  • Online ISBN: 978-3-030-01443-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics