Advertisement

Modeling of Polluted Groundwater Flow in Porous Media

  • Miroslav Rozložník
Chapter
Part of the Nečas Center Series book series (NECES)

Abstract

This chapter is devoted to the case study that comes from a real-world application of groundwater flow modeling in the area of Stráž pod Ralskem in northern Bohemia. We give some basic facts about the uranium mining in northern Bohemia together with a short description of main activities of the Department of Mathematical Modeling at the state enterprise DIAMO in Stráž pod Ralskem.

References

  1. 4.
    M. Arioli, J. Maryška, M. Rozložník, M. Tůma, Dual variable methods for mixed-hybrid finite element approximation of the potential fluid flow problem in porous media. ETNA 22, 17–40 (2006)MathSciNetzbMATHGoogle Scholar
  2. 9.
    P. Bastian, M. Blatt, R. Scheichl, Algebraic multigrid for discontinuous Galerkin discretizations of heterogeneous elliptic problems. Numer. Linear Algebra Appl. 19(2), 367–388 (2012)MathSciNetCrossRefGoogle Scholar
  3. 47.
    E.F. Kaasschieter, A.J.M. Huijben, Mixed hybrid finite elements and streamline computation for the potential flow problem. Numer. Method Partial Differ. Equ. 8(3), 221–266 (1992)MathSciNetCrossRefGoogle Scholar
  4. 50.
    M. Kroupa, J. Mužák, J. Trojáček, Remediation of former uranium in-situ leaching area at Stráž pod Ralskem – Hamr na Jezeře, Czech Republic. The Uranium Mining and Remediation Exchange Group (UMREG) and other uranium production cycle technical meetings – Selected papers 2012–2015. IAEA-TECDOC, Vienna (in preparation)Google Scholar
  5. 57.
    J. Maryška, M. Rozložník, M. Tůma, Mixed hybrid finite element approximation of the potential fluid flow problem. J. Comput. Appl. Math. 63, 383–392 (1995)MathSciNetCrossRefGoogle Scholar
  6. 58.
    J. Maryška, M. Rozložník, M. Tůma, The potential fluid flow problem and the convergence rate of the minimal residual method. Numer. Linear Algebra Appl. 3, 525–542 (1996)MathSciNetCrossRefGoogle Scholar
  7. 59.
    J. Maryška, M. Rozložník, M. Tůma, Schur complement systems in the mixed-hybrid finite element approximation of the potential fluid flow problem. SIAM J. Sci. Comput. 22, 704–723 (2000)MathSciNetCrossRefGoogle Scholar
  8. 60.
    J. Maryška, M. Rozložník, M. Tůma, Schur complement reduction in the mixed-hybrid approximation of Darcy’s law: rounding error analysis. J. Comput. Appl. Math. 117, 159–173 (2000)MathSciNetCrossRefGoogle Scholar
  9. 68.
    C. Powell, D.J. Silvester, Optimal preconditioning for Raviart–Thomas mixed formulation of second-order elliptic problems. SIAM J. Matrix Anal. Appl. 25(3), 718–738 (2003)MathSciNetCrossRefGoogle Scholar
  10. 82.
    A.J. Wathen, B. Fischer, D.J. Silvester, The convergence rate of the minimal residual method for the Stokes problem. Numer. Math. 71, 121–134 (1995)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Miroslav Rozložník
    • 1
  1. 1.Institute of MathematicsCzech Academy of SciencesPragueCzech Republic

Personalised recommendations