Skip to main content

Graph Matching and Pseudo-Label Guided Deep Unsupervised Domain Adaptation

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2018 (ICANN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11141))

Included in the following conference series:

Abstract

The goal of domain adaptation is to train a high-performance predictive model on the target domain data by using knowledge from the source domain data, which has different but related data distribution. In this paper, we consider unsupervised domain adaptation where we have labelled source domain data but unlabelled target domain data. Our solution to unsupervised domain adaptation is to learn a domain-invariant representation that is also category discriminative. Domain-invariant representations are realized by minimizing the domain discrepancy. To minimize the domain discrepancy, we propose a novel graph-matching metric between the source and target domain representations. Minimizing this metric allows the source and target representations to be in support of each other. We further exploit confident unlabelled target domain samples and their pseudo-labels to refine our proposed model. We expect the refining step to improve the performance further. This is validated by performing experiments on standard image classification adaptation datasets. Results showed our proposed approach out-perform previous domain-invariant representation learning approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: OSDI, pp. 265–283 (2016)

    Google Scholar 

  2. Chapelle, O., Schlkopf, B., Zien, A.: Semi-Supervised Learning, 1st edn. The MIT Press, Cambridge (2010)

    Google Scholar 

  3. Courty, N., Flamary, R., Tuia, D., Rakotomamonjy, A.: Optimal transport for domain adaptation. IEEE Trans. Pattern Anal. Mach. Intell. 39(9), 1853–1865 (2017)

    Article  Google Scholar 

  4. Das, D., Lee, C.S.G.: Sample-to-sample correspondence for unsupervised domain adaptation. Eng. Appl. Artif. Intell. 73, 80–91 (2018)

    Article  Google Scholar 

  5. Das, D., Lee, C.S.G.: Unsupervised domain adaptation using regularized hyper-graph matching. In: Proceedings of IEEE International Conference on Image Processing (2018, to appear)

    Google Scholar 

  6. Donahue, J., et al.: DECAF: a deep convolutional activation feature for generic visual recognition. In: International Conference on Machine Learning, pp. 647–655 (2014)

    Google Scholar 

  7. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(59), 1–35 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow kernel for unsupervised domain adaptation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2066–2073 (2012)

    Google Scholar 

  9. Gretton, A., Smola, A., Huang, J., Schmittfull, M., Borgwardt, K., Schölkopf, B.: Covariate shift by kernel mean matching. Dataset Shift Mach. Learn. 3(4), 5 (2009)

    Google Scholar 

  10. Hoffman, J., Rodner, E., Donahue, J., Kulis, B., Saenko, K.: Asymmetric and category invariant feature transformations for domain adaptation. Int. J. Comput. Vis. 109(1–2), 28–41 (2014)

    Article  MathSciNet  Google Scholar 

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2015)

    Google Scholar 

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  13. Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with deep adaptation networks. In: International Conference on Machine Learning, pp. 97–105 (2015)

    Google Scholar 

  14. Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)

    MATH  Google Scholar 

  15. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Engg. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  16. Shen, J., Qu, Y., Zhang, W., Yong, Y.: Wasserstein distance guided representation learning for domain adaptation. In: AAAI, pp. 3–9 (2018)

    Google Scholar 

  17. Sun, B., Feng, J., Saenko, K.: Return of frustratingly easy domain adaptation. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  18. Sun, B., Saenko, K.: Deep CORAL: correlation alignment for deep domain adaptation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 443–450. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_35

    Chapter  Google Scholar 

  19. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. arXiv preprint arXiv:1702.05464 (2017)

  20. Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion: maximizing for domain invariance. arXiv preprint arXiv:1412.3474 (2014)

Download references

Acknowledgments

This work was supported in part by the National Science Foundation under Grant IIS-1813935. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasmit Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Das, D., Lee, C.S.G. (2018). Graph Matching and Pseudo-Label Guided Deep Unsupervised Domain Adaptation. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds) Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science(), vol 11141. Springer, Cham. https://doi.org/10.1007/978-3-030-01424-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01424-7_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01423-0

  • Online ISBN: 978-3-030-01424-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics