Skip to main content

Classification of Bone Tumor on CT Images Using Deep Convolutional Neural Network

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2018 (ICANN 2018)

Abstract

Classification of bone tumor plays an important role in treatment. As artificial diagnosis is in low efficiency, an automatic classification system can help doctors analyze medical images better. However, most existing methods cannot reach high classification accuracy on clinical images because of the high similarity between images. In this paper, we propose a super label guided convolutional neural network (SG-CNN) to classify CT images of bone tumor. Images with two hierarchical labels would be fed into the network, and learned by its two sub-networks, whose tasks are learning the whole image and focusing on lesion area to learn more details respectively. To further improve classification accuracy, we also propose a multi-channel enhancement (ME) strategy for image preprocessing. Owing to the lack of suitable public dataset, we introduce a CT image dataset of bone tumor. Experimental results on this dataset show our SG-CNN and ME strategy improve the classification accuracy obviously.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, Y.J., Cui, X.F., Li, C.C., Li, S.J.: Efficacy of DR, CT and MRI in bone tumors. Chinese-German J Clin. Oncol. 13(4), 181–184 (2014)

    Google Scholar 

  2. Keidar, Z., Israel, O., Krausz, Y.: SPECT/CT in tumor imaging: technical aspects and clinical applications. Semin. Nucl. Med. 33(3), 205 (2003)

    Article  Google Scholar 

  3. Sánchez A, V.D.: Advanced support vector machines and kernel methods. Neurocomputing. 55(1), 5–20 (2003)

    Article  Google Scholar 

  4. Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., et al.: Dermatolo gist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118 (2017)

    Article  Google Scholar 

  5. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. arXiv:1705.02315 (2017)

  6. Krizhevsky, A., Sutskever, I., Hinton, G. E.: ImageNet classification with deep convolutional neural networks. In: International Conference on Neural Information Processing Systems, pp. 1097–1105. Curran Associates Inc. (2012)

    Google Scholar 

  7. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)

  8. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  10. Anthimopoulos, M., Christodoulidis, S., Ebner, L., Christe, A., Mougiakakou, S.: Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans. Med. Imaging 35(5), 1207–1216 (2016)

    Article  Google Scholar 

  11. Li, Q., Cai, W., Wang, X., Zhou, Y.: Medical image classification with convolutional neural network. In: International Conference on Control Automation Robotics and Vision, pp. 844–848. IEEE (2016)

    Google Scholar 

  12. Miki, Y., et al.: Classification of teeth in cone-beam CT using deep convolutional neural network. Comput. Biol. Med. 80(C), 24–29 (2017)

    Article  Google Scholar 

  13. Kumar, P., Grewal, M., Srivastava, M.M.: Boosted cascaded convnets for multilabel classification of thoracic diseases in chest radiographs. arXiv:1711.08760 (2017)

  14. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Li, F.F.: ImageNet: a large-scale hierarchical image database. In: Computer Vision and Pattern Recognition (CVPR), pp. 248–255. IEEE (2009)

    Google Scholar 

  15. Wei, X.S., Xie, C.W., Wu, J.: Mask-CNN localizing parts and selecting descriptors for fine-grained image recognition. In: Conference and Workshop on Neural Information Processing Systems (NIPS) (2016). arXiv:1605.06878

  16. Zhang, N., Donahue, J., Girshick, R., Darrell, T.: Part-based R-CNNs for fine-grained category detection. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 834–849. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_54

    Chapter  Google Scholar 

  17. Huang, S., Xu, Z., Tao, D., Zhang, Y.: Part-stacked CNN for fine-grained visual categorization. In: Computer Vision and Pattern Recognition, pp. 1173–1182. IEEE (2016)

    Google Scholar 

  18. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167 (2015)

  19. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 886–893. IEEE Computer Society (2005)

    Google Scholar 

  20. Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interdisc. Rev. Comput. Stat. 2(4), 433–459 (2010)

    Article  Google Scholar 

  21. Hoochang, S., et al.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35(5), 1285 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Shenzhen Municipal Development and Reform Commission (Disciplinary Development Program for Data Science and Intelligent Computing), and by Shenzhen International cooperative research projects GJHZ20170313150021171.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuesheng Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Zhou, W., Lv, G., Luo, G., Zhu, Y., Liu, J. (2018). Classification of Bone Tumor on CT Images Using Deep Convolutional Neural Network. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds) Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science(), vol 11140. Springer, Cham. https://doi.org/10.1007/978-3-030-01421-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01421-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01420-9

  • Online ISBN: 978-3-030-01421-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics