Skip to main content

Microsaccades for Neuromorphic Stereo Vision

  • Conference paper
  • First Online:
Book cover Artificial Neural Networks and Machine Learning – ICANN 2018 (ICANN 2018)

Abstract

Depth perception through stereo vision is an important feature of biological and artificial vision systems. While biological systems can compute disparities effortlessly, it requires intensive processing for artificial vision systems. The computing complexity resides in solving the correspondence problem – finding matching pairs of points in the two eyes. Inspired by the retina, event-based vision sensors allow a new constraint to solve the correspondence problem: time. Relying on precise spike-time, spiking neural networks can take advantage of this constraint. However, disparities can only be computed from dynamic environments since event-based vision sensors only report local changes in light intensity. In this paper, we show how microsaccadic eye movements can be used to compute disparities from static environments. To this end, we built a robotic head supporting two Dynamic Vision Sensors (DVS) capable of independent panning and simultaneous tilting. We evaluate the method on both static and dynamic scenes perceived through microsaccades. This paper demonstrates the complementarity of event-based vision sensors and active perception leading to more biologically inspired robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davies, E.R.: Computer and Machine Vision: Theory, Algorithms, Practicalities. Academic Press, Cambridge (2012)

    Google Scholar 

  2. Davison, A.P.: PyNN: a common interface for neuronal network simulators. Front. Neuroinform. 2, 11 (2008)

    Article  Google Scholar 

  3. Dikov, G., Mohsen, F., Röhrbein, F., Conradt, J., Richter, C.: Spiking cooperative stereo-matching at 2 ms latency with neuromorphic hardware. Front. Neurosci. (2017)

    Google Scholar 

  4. Dodgson, N.A.: Variation and extrema of human interpupillary distance. Proc. Soc. Photo-Opt. Instrum. Eng. 12(8), 36–46 (2004)

    Google Scholar 

  5. Furber, S., Temple, S., Brown, A.: On-chip and inter-chip networks for modelling large-scare neural systems, pp. 6–9 (2006)

    Google Scholar 

  6. Furber, S.B., Galluppi, F., Temple, S., Plana, L.A.: The spinnaker project. Proc. IEEE 102(5), 652–665 (2014)

    Article  Google Scholar 

  7. Gerstner, W., Kistler, W.M.: Spiking Neuron Models: Single Neurons, Populations. Plasticity. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  8. Gewaltig, M.O., Diesmann, M.: Nest (neural simulation tool). Scholarpedia 2(4), 1430 (2007)

    Article  Google Scholar 

  9. Hermann, A., et al.: Hardware and software architecture of the bimanual mobile manipulation robot HoLLiE and its actuated upper body. In: 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics: Mechatronics for Human Wellbeing, AIM 2013, pp. 286–292, July 2013

    Google Scholar 

  10. Kaiser, J., et al.: Benchmarking microsaccades for feature extraction with spiking neural networks on continuous event streams. In: International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob) (2018, submitted)

    Google Scholar 

  11. Lichtsteiner, P., Posch, C., Delbruck, T.: A \(128\, \times \,128\) 120 db 15 \(\mu \)s latency asynchronous temporal contrast vision sensor. IEEE J. Solid-State Circuits 43(2), 566–576 (2008)

    Article  Google Scholar 

  12. Maass, W.: Networks of spiking neurons: the third generation of neural network models. Neural Netw. 10(9), 1659–1671 (1997)

    Article  Google Scholar 

  13. Marr, D.: Vision: a computational investigation into the human representation and processing of visual information. W.H. Freeman and Company, San Francisco (1982)

    Google Scholar 

  14. Marr, D., Poggio, T.: A theory of human stereo vision. Proc. Roy. Soc. Lond. B Biol. Sci. 204, 301–328 (1977)

    Article  Google Scholar 

  15. Martinez-Conde, S., Macknik, S.L., Hubel, D.H.: The role of fixational eye movements in visual perception. Nat. Rev. Neurosci. 5(3), 229–240 (2004)

    Article  Google Scholar 

  16. Masquelier, T., Portelli, G., Kornprobst, P.: Microsaccades enable efficient synchrony-based coding in the retina: a simulation study. Sci. Rep. 6, 24086 (2016)

    Article  Google Scholar 

  17. Mueggler, E., Huber, B., Scaramuzza, D.: Event-based, 6-DOF pose tracking for high-speed maneuvers. In: International Conference on Intelligent Robots and Systems. IEEE (2014)

    Google Scholar 

  18. Orchard, G., Jayawant, A., Cohen, G., Thakor, N.: Converting static image datasets to spiking neuromorphic datasets using saccades. arXiv preprint arXiv:1507.07629 (2015)

  19. Osswald, M., Ieng, S.H., Benosman, R., Indiveri, G.: A Spiking Neural Network Model of 3D Perception For Event-Based Neuromorphic Stereo Vision Systems, pp. 1–11. Nature Publishing Group, London (2017)

    Google Scholar 

  20. Osswald, M., Ieng, S.H., Benosman, R., Indiveri, G.: Supplementary Material: A Spiking Neural Network Model of 3D Perception for Event-Based Neuromorphic Stereo Vision Systems, pp. 1–14 (2017)

    Google Scholar 

  21. Rucci, M., Victor, J.D.: The unsteady eye: an information-processing stage, not a bug. Trends Neurosci. 38(4), 195–206 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This research has received funding from the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreement No. 720270 (Human Brain Project SGA1) and No. 785907 (Human Brain Project SGA2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Camilo Vasquez Tieck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kaiser, J. et al. (2018). Microsaccades for Neuromorphic Stereo Vision. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds) Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science(), vol 11139. Springer, Cham. https://doi.org/10.1007/978-3-030-01418-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01418-6_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01417-9

  • Online ISBN: 978-3-030-01418-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics