Skip to main content

Parametrization of Norm 1 Elements of \(\mathbb{K}\)

  • Chapter
  • First Online:
Cubic Fields with Geometry

Part of the book series: CMS Books in Mathematics ((CMSBM))

  • 844 Accesses

Abstract

Choose any two rational numbers and get an element of norm 1 of a cubic field. We give formulas for doing this in terms of the generic letters a, b, c, d used to define the cubic field generated by the polynomial with these coefficients. This is related to Hilbert’s theorem 90 but accomplishes the goal of parametrization without requiring the cubic field to be cyclic. It is well known that this is possible due to a result of Voskresenskiĭ, but we discuss this work with very little of the language or tools of algebraic geometry, with the exception of some projective geometry. We also discuss conics and singular elliptic curves as they are significantly easier to parameterize.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If we chose D −1 = 1, then 1 ∘ (−1) would not be defined in \(\mathbb{P}^{1}(\mathbb{Q})\).

References

  1. S. S. Abhyankar, Algebraic geometry for scientists and engineers. Mathematical Surveys and Monographs, 35. American Mathematical Society, Providence, RI, 1990. MR1075991

    Google Scholar 

  2. M. Bright, F. Lemmermeyer, A Mathoverflow question: parametrization-of-2-dimensional-torus, http://mathoverflow.net/questions/61859/

  3. D. F. Coray, M. A. Tsfasman, Arithmetic on singular Del Pezzo surfaces, Proc. London Math. Soc. (1988) s3-57 (1): 25-87.

    Article  MathSciNet  Google Scholar 

  4. L. Cremona, Mémoire de géométrie pure sur les surfaces du troisiéme ordre, 68, 1868, 1–133.

    MathSciNet  Google Scholar 

  5. N. Elkies, Pythagorean triples and Hilbert’s Theorem 90, http://www.math.harvard.edu/~elkies/Misc/hilbert.pdf

  6. S. Hambleton, Continued fractions and Pell conics, Available via The University of Queensland Library, https://espace.library.uq.edu.au/view/UQ:260016

  7. S. Hambleton, F. Lemmermeyer, Arithmetic of Pell surfaces, Acta Arith. 146, (2011) no. 1, 1–12. MR2741187 (2012b:11097)

    Article  MathSciNet  Google Scholar 

  8. A. Henderson, The twenty-seven lines upon the cubic surface, Thesis (Ph.D.)-The University of Chicago. 1915.

    Google Scholar 

  9. D. Hilbert, The theory of algebraic number fields, Translated from the German by Iain T. Adamson; With an introduction by F. Lemmermeyer and N. Schappacher, Springer-Verlag, Berlin, 1998. MR1646901 (99j:01027)

    Google Scholar 

  10. K. Hulek, Elementary algebraic geometry, Translated from the 2000 German original by Helena Verrill. Student Mathematical Library, 20. American Mathematical Society, Providence, RI, 2003. MR1955795 (2003m:14002)

    Google Scholar 

  11. M. J. Jacobson, Jr., H. C. Williams, Solving the Pell Equation. CMS Books in Mathematics, Springer, New York, 2009. MR2466979 (2009i:11003)

    Google Scholar 

  12. F. Lemmermeyer, Conics – A poor man’s elliptic curves, arXiv:math/0311306v1

  13. F. Lemmermeyer, Parametrization of algebraic curves from a number theorist’s point of view, Amer. Math. Monthly, 119, no. 7, (2012) 573-583.

    Article  MathSciNet  Google Scholar 

  14. F. Lemmermeyer, Higher descent on Pell conics I – From Legendre to Selmer, arXiv:math/0311309v1

  15. F. Lemmermeyer, Higher descent on Pell conics II – Two centuries of missed opportunities, arXiv:math/0311296v1

  16. F. Lemmermeyer, Higher descent on Pell conics III – The first 2-descent, arXiv:math/0311310v1

  17. F. Lemmermeyer, Lecture notes on Pell conics and elliptic curves given at the University of Seoul, 2002. http://www.fen.bilkent.edu.tr

  18. F. Lemmermeyer, Modular Pell conics, http://www.rzuser.uni-heidelberg.de/~hb3/publ-new.html

  19. L. J. Mordell, Diophantine equations. Pure and Applied Mathematics, Vol. 30 Academic Press, London-New York, 1969. MR0249355

    Google Scholar 

  20. G. Salmon, A treatise of the analytic geometry of three dimensions, 4th edn., Hodges, Figgis & Co., Dublin, 1882. made available by Google at: https://archive.org/details/atreatiseonanal05salmgoog

  21. I. R. Shafarevich, Basic algebraic geometry 1, Springer, 3d edn., 2014.

    Google Scholar 

  22. J. H. Silverman, J. Tate, Rational points on elliptic curves, 2nd edn., Undergraduate Texts in Mathematics. Springer, Cham, 2015.

    Google Scholar 

  23. J. Steiner, Ueber die Flächen dritten Grades, J. Reine Angew. Math. 53 (1856).

    Google Scholar 

  24. V. E. Voskresenskiĭ, Algebraic groups and their birational invariants, Translations of Mathematical Monographs, 179, Translated from the Russian manuscript by Boris È. Kunyavskiĭ, American Mathematical Society, Providence, RI, 1998. MR1634406 (99g:20090)

    Google Scholar 

  25. V. E. Voskresenskiĭ, Two-dimensional algebraic tori, Izv. Akad. Nauk SSSR SER. MAT. 29 (1965), 239-244; ENGLISH TRANSL., AMER. MATH. SOC. TRANSL. (2)73 (1968), 190-195. (MR 30 # 3097).

    Google Scholar 

  26. V. E. Voskresenskiĭ, On two-dimensional algebraic tori. II, Izv. Akad. Nauk SSSR SER. MAT. 31 (1967), no. 3, 691–696.

    Google Scholar 

  27. C. Zwikker, The advanced geometry of plane curves and their applications, Dover Phoenix Editions, 2005. MR0166651 (29 #3924)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hambleton, S.A., Williams, H.C. (2018). Parametrization of Norm 1 Elements of \(\mathbb{K}\) . In: Cubic Fields with Geometry. CMS Books in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-030-01404-9_9

Download citation

Publish with us

Policies and ethics