We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Cubic Fields | SpringerLink
Skip to main content

Cubic Fields

  • Chapter
  • First Online:
Cubic Fields with Geometry

Part of the book series: CMS Books in Mathematics ((CMSBM))

  • 873 Accesses

Abstract

A cubic irrationality is a root of an irreducible (over the rationals) polynomial of degree 3 with rational coefficients. In this chapter we discuss many of the well-known properties of these numbers. In particular, we describe the cubic polynomial and develop many of the attributes of the cubic field generated by such a polynomial. This involves examining orders, the maximal order, integral bases of an order, the discriminant, and the performance of arithmetic in these structures. We also discuss the various types of cubic fields and the properties of the units and regulator. We conclude with a collection of results concerning the development of the simple continued fraction of a cubic irrationality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Eisenstein [70, 71] discussed \(\mathcal{Q}\) and \(\mathcal{F}\) obtained from \(\mathcal{C} = (a, 3b, 3c,d)\).

  2. 2.

    (1.47) was known to Eisenstein [70, p. 97] in relation to binary cubic forms.

  3. 3.

    Cubic hyperbolas and even elliptic curves in Weierstrass form (without their arithmetic) were considered by Newton in the first edition of Optiks [149, Tables I, II, IV, VI].

  4. 4.

    Eisenstein [72] in 1844 considered the ternary cubic form u 3 + pp 1 y 3 + pp 2 z 3 − 3puyz, equal to the product \(\prod _{j=1}^{3}\left (u +\rho ^{j}\eta y +\rho ^{-j}\theta z\right )\), where the rational prime \(p \equiv 1\pmod 3\), p = p 1 p 2 in the quadratic field \(\mathbb{Q}(\rho )\), where ρ is a primitive cube root of unity, and \(\eta = \root{3}\of{pp_{1}}\), \(\theta = \root{3}\of{pp_{2}}\). Dickson [66, p. 259] begins the chapter on ternary cubic forms discussing Eisenstein’s work, where it is noted that the change of variables y = v + ρw, z = v + ρ 2 w produces a ternary cubic form with rational integer coefficients.

References

  1. Ş. Alaca, K. S. Williams, Introductory algebraic number theory, 2004, Cambridge University Press. MR2031707 (2005d:11152)

    Google Scholar 

  2. E. Artin, Theory of algebraic numbers, Notes by Gerhard Würges from lectures held at the Mathematics Institut, Göttingen, Germany, in the Winter Semester, 1956/7. Translated by George Striker, Schildweg 12, Göttingen 1959.

    Google Scholar 

  3. S. Astudillo, F. Diaz y Diaz, E. Friedman, Sharp bounds for regulators of small-degree number fields, Journal of Number Theory, 167 (2016), 232–258. MR3504045

    Article  MathSciNet  Google Scholar 

  4. K. Belabas, A fast algorithm to compute cubic fields, Math. Comp. 66 (1997), no. 219, 1213–1237. MR1415795 (97m:11159)

    Article  MathSciNet  Google Scholar 

  5. K. Belabas, H. Cohen, Binary cubic forms and cubic number fields, Computational perspectives on number theory (Chicago, IL, 1995) 191-219, AMS/IP Stud. Adv. Math. 7, Amer. Math. Soc., Providence, RI, 1998. MR1486838 (98m:11027)

    Google Scholar 

  6. W. E. H. Berwick, Algebraic number-fields with two independent units, Proc. London Math. Soc. (2), 34 (1932), no. 5, 360–378. MR1576157

    Article  MathSciNet  Google Scholar 

  7. E. Bombieri, A. J. van der Poorten, Continued fractions of algebraic numbers, Computational Algebra and Number theory, Sydney 1992, Wieb Bosma and Alf van der Porten eds., (Kluwer, 1995), 137 - 152.

    Google Scholar 

  8. Z. I. Borevech, I. R. Shafarevich, Number Theory, Translated from the Russian by Newcomb Greenleaf, Pure and Applied Mathematics, Vol. 20, Academic Press, New York-London, 1996. MR0195803

    Google Scholar 

  9. R. P. Brent, A. J. van der Poorten, H. J. Riele, A comparative study of algorithms for computing continued fractions of algebraic numbers, Algorithmic Number Theory (Talence 1996), LNCS 1122. Springer, Berlin, 1996, pp. 35 - 47.

    Google Scholar 

  10. D. R. L. Brown, Toy factoring by Newton’s method, IACR Cryptology ePrint Archive 2008: 149 (2008)

    Google Scholar 

  11. D. G. Cantor, P. G. Galyean, H. G. Zimmer, A continued fraction algorithm for real algebraic numbers, Math. Comp. 26 (1972), 785–791. MR0330118 (48 #8456)

    Article  MathSciNet  Google Scholar 

  12. G. Cardano, Ars Magna or The Rules of Algebra, Translated and Edited by T. Richard Witmer. With a Forward by Oystein Ore, Dover Publications, Inc. New York, 1968.

    Google Scholar 

  13. J. W. S. Cassels, A. Föhlich, Algebraic Number Theory, Thompson Book Co., Washington D. C., 1967.

    Google Scholar 

  14. A. Cayley, Note sur les covariants d’une fonction quadratique, cubique, ou biquadratique à deux indéterminées, J. Reine Angew. Math. 50 (1855) 285–287.

    Article  MathSciNet  Google Scholar 

  15. H. Cohen, A Course in Computational Algebraic Number Theory, Graduate Texts in Mathematics, 138. Springer-Verlag, Berlin, 1993. MR1228206 (94i:11105)

    Book  Google Scholar 

  16. H. Cohen, Advanced Topics in Computational Number Theory. Graduate Texts in Mathematics, vol. 193, Springer-Verlag, New York, 2000.

    Google Scholar 

  17. H. Cohn, A Classical Introduction to Algebraic Numbers and Class Fields, Springer-Verlag, New York, 1978.

    Book  Google Scholar 

  18. T. W. Cusick, Lower bounds for the regulators, Lecture Notes in Mathematics 1068, Springer-Verlag, 1984, pp. 63 - 73.

    Google Scholar 

  19. B. N. Delone, The St. Petersburg School of Number Theory, History of Mathematics, 26, Translated by Robert Burns, 2005.

    Google Scholar 

  20. B. N. Delone, D. K. Faddeev, The theory of Irrationalities of the third degree, Translations of Mathematical Monographs, Vol. 10 American Mathematical Society, Providence, R.I. 1964. MR0160744 (28 #3955)

    Google Scholar 

  21. L. E. Dickson, Algebraic invariants, John Wiley & Sons, Inc. 1914.

    MATH  Google Scholar 

  22. L. E. Dickson, History of the theory of numbers, Vol III: Quadratic and Higher Forms, Dover Publications, Inc. Mineola, New York, 2005.

    MATH  Google Scholar 

  23. P. G. L. Dirichlet, Einige Resultate von Untersuchungen über eine Classe homogener Functionen des dritten und der höheren Grade, Sitzung der physik.-math. Classe der Acad. Wissens. Jahrg. (1841), 280–285.

    Google Scholar 

  24. G. Eisenstein, Untersuchungen über die cubischen formen mit zwei variablen, J. Reine Angew. Math. 27 (1844) 89–104.

    Article  MathSciNet  Google Scholar 

  25. G. Eisenstein, Über eine merkwürdige identische Gleichung, J. Reine Angew. Math. 27 (1844) 105–106.

    Article  MathSciNet  Google Scholar 

  26. G. Eisenstein, Allgemeine Untersuchungen über die Formen dritten Grades mit drei Variabeln, welche der Kreistheilung ihre Entstehung verdanken, J. Reine Angew. Math. 27 (1844), 289–374.

    MathSciNet  Google Scholar 

  27. C. F. Gerald, P. O. Wheatly, Applied numerical analysis, 7th Ed., 2004, Pearson Education.

    Google Scholar 

  28. S. Hambleton, A cubic generalization of Brahmagupta’s identity, J. Ramanujan Math. Soc., 32, (2017) no. 4, 327–337.

    MathSciNet  Google Scholar 

  29. S. Hambleton, F. Lemmermeyer, Arithmetic of Pell surfaces, Acta Arith. 146, (2011) no. 1, 1–12. MR2741187 (2012b:11097)

    Article  MathSciNet  Google Scholar 

  30. G. H. Hardy, E. M. Wright, An Introduction to the Theory of Numbers, 6th Ed. Revised by D. R. Heath-Brown and J. H. Silverman. With a foreword by Andrew Wiles. Oxford University Press, Oxford, 2008. MR2445243 (2009i:11001)

    Google Scholar 

  31. D. Hilbert, Theory of algebraic invariants. Translated from the German and with a preface by Reinhard C. Laubenbacher. Edited and with an introduction by Bernd Sturmfels. Cambridge University Press, Cambridge, 1993. MR1266168

    Google Scholar 

  32. K. Ireland, M. Rosen, A classical introduction to modern number theory, 2nd Edn, Graduate Texts in Mathematics, 84. Springer-Verlag, New York, 1990. MR1070716 (92e:11001)

    Chapter  Google Scholar 

  33. M. J. Jacobson, Jr., H. C. Williams, Solving the Pell Equation. CMS Books in Mathematics, Springer, New York, 2009. MR2466979 (2009i:11003)

    Google Scholar 

  34. N. S. Jeans, M. D. Hendy, Determining the fundamental unit of a pure cubic field given any unit, Math. Comp. 32 (1978), 925 - 935. MR0472761 (57 #12451)

    Article  MathSciNet  Google Scholar 

  35. S. Lang, Algebraic Number Theory, 2nd ed., Graduate Texts in Mathematics, 110. Springer-Verlag, New York, 1994. MR1282723 (95f:11085)

    Book  Google Scholar 

  36. S. Lang, H. Trotter, Continued fractions for some algebraic numbers, J. Reine Angew. Math., 255 (1972), 112 - 134.

    MathSciNet  MATH  Google Scholar 

  37. F. Lemmermeyer, Conics – A poor man’s elliptic curves, http://arxiv.org/abs/math/0311306

    Google Scholar 

  38. H. W. Lenstra, Factoring integers with elliptic curves, Annals of Math. 126 (1987), no. 3, 649–673. MR0916721 (89g:11125)

    Article  MathSciNet  Google Scholar 

  39. G. Lochs, Vergleich der Genauichkeit von Dezimalbruch und Kettenbruch, (German) Abh. Math. Sem. Univ. Hamburg, 27 (1964), 142–144. MR0162753 (29 #57)

    Article  MathSciNet  Google Scholar 

  40. A. Magidin, D. McKinnon, Gauss’ Lemma for number fields, Amer. Math. Monthly, 112, (2005), no. 5, 385–416. MR2139573 (2005m:11199)

    Article  MathSciNet  Google Scholar 

  41. D. A. Marcus, Number Fields, Universitext. Springer-Verlag, New York-Heidelberg, 1977. MR0457396 (56 #15601)

    Google Scholar 

  42. K. Matthews, The Diophantine equation x 2 − Dy 2 = N, D > 0, Expo. Math. 18 (2000), no. 4, 323–331. MR1788328 (2001i:11029)

    Google Scholar 

  43. L. J. Mordell, Diophantine equations. Pure and Applied Mathematics, Vol. 30 Academic Press, London-New York, 1969. MR0249355

    Google Scholar 

  44. S. Neumark, Solution of cubic and quartic equations, Pergamon Press Ltd., 1965.

    MATH  Google Scholar 

  45. I. Newton, Optiks: Or, a treatise of the reflexions, refractions, inflexions and colours of light. Also two treatises of the species and magnitude of curvilinear figures, 1st edn., London, 1704. Available at: https://archive.org/details/opticksortreatis00newt

  46. I. Niven, H. S. Zuckerman, H. L. Montgomery, An introduction to the Theory of Numbers, 5th edn., John Wiley and Sons Inc., New York, 1991. MR1083765 (91i:11001)

    Google Scholar 

  47. O. Perron, Die Lehre von den Kettenbrüchen, 3. verb. und erweiterte Aufl. Teubner, Stuttgart, 1954–57.

    Google Scholar 

  48. R. D. Richtmyer, M. Devaney, N. Metropolis, Continued fraction expansions of algebraic numbers, Numer. Math. (1962), 68 - 84.

    Article  MathSciNet  Google Scholar 

  49. A. M. Rockett, P. Szüsz, Continued Fractions, World Scientific Publishing Co., Inc., River Edge, NJ, 1992. MR1188878 (93m:11060)

    Google Scholar 

  50. D. Rosen, J. Shallit, A continued fraction algorithm for approximating all real polynomial roots, Mathematics Magazine, 51, (1978), no. 2, 112–116. MR0488701 (58 #8219)

    Article  MathSciNet  Google Scholar 

  51. D. Shanks, The simplest cubic fields, Math. Comp. 28 (1974) 1137 – 1152. MR0352049 (50 #4537)

    Article  MathSciNet  Google Scholar 

  52. I. N. Stewart, D. O. Tall, Algebraic Number Theory, Chapman and Hall, London, 1979. MR0549770 (81g:12001)

    Chapter  Google Scholar 

  53. J. V. Uspensky, Theory of Equations, McGraw-Hill, New York, 1948.

    Google Scholar 

  54. G. Voronoi, Concerning algebraic integers derivable from a root of an equation of the third degree, Master’s Thesis, St. Petersburg, (1894), (Russian)

    Google Scholar 

  55. G. Voronoi, A Generalization of the Algorithm of Continued Fractions, Doctoral Thesis, Translated from the original Russian text published in Warsaw, 1896.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hambleton, S.A., Williams, H.C. (2018). Cubic Fields. In: Cubic Fields with Geometry. CMS Books in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-030-01404-9_1

Download citation

Publish with us

Policies and ethics