Skip to main content

Overview of (pro-)Lie Group Structures on Hopf Algebra Character Groups

  • Conference paper
  • First Online:
Discrete Mechanics, Geometric Integration and Lie–Butcher Series

Abstract

Character groups of Hopf algebras appear in a variety of mathematical and physical contexts. To name just a few, they arise in non-commutative geometry, renormalisation of quantum field theory, and numerical analysis. In the present article we review recent results on the structure of character groups of Hopf algebras as infinite-dimensional (pro-)Lie groups. It turns out that under mild assumptions on the Hopf algebra or the target algebra the character groups possess strong structural properties. Moreover, these properties are of interest in applications of these groups outside of Lie theory. We emphasise this point in the context of two main examples:

  • the Butcher group from numerical analysis and

  • character groups which arise from the Connes–Kreimer theory of renormalisation of quantum field theories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In these contexts the term “combinatorial Hopf algebra” is often used though there seems to be no broad consensus on the meaning of this term.

  2. 2.

    This Hopf algebra depends on the quantum field theory under consideration, but we will suppress this dependence in our notation.

  3. 3.

    The term “ordered” refers to that the subtree remembers from which part of the tree it was cut.

  4. 4.

    Note that \(\mathfrak {g}\) can be recovered from the Hopf algebra \(\mathscr {U}(\mathfrak {g})\) (see [7, Theorem 3.6.1]) and the Hopf algebras which arise in this way are characterised by the Milnor–Moore theorem (cf. Remark 7).

  5. 5.

    The problem here is that the bounded linear operators do not admit a good topological structure if the spaces are not normable. In particular, the chain rule will not hold for Fréchet-differentiability in general for these spaces (cf. [22, p. 73] or [23]).

  6. 6.

    If E and F are Fréchet spaces, real analytic maps in the sense just defined coincide with maps which are continuous and can be locally expanded into a power series. See [28, Proposition 4.1].

  7. 7.

    Note that it is well known that the algebra multiplication as a bilinear map will be continuous if we require it to be continuous with respect to the projective topological tensor product \(B \otimes _\pi B\) (see e.g. [31]). However, one does not gain more information in doing so, whence we avoid discussing this tensor product (or any topology on the tensor product). For this reason one of the authors has been accused of “cheating”.

  8. 8.

    These numbers depend on the structure of a certain ordinary differential equation. We refer to [42] for more details.

  9. 9.

    Contrarily to the situation for finite-dimensional Lie groups, not every closed subgroup of an infinite-dimensional Lie group is again a Lie subgroup. See [30, Remark IV.3.17] for an example.

  10. 10.

    \(G_0\) in [55, Theorem 6.9] is larger than the set of Runge–Kutta methods, however, the statement still holds if \(G_0\) is the group of Runge–Kutta methods. See also [56, Theorem 317A].

  11. 11.

    A metric d is an ultrametric if \(d(\phi , \psi ) \le \max \{ d(\phi , \chi ), d(\chi , \psi )\}\).

  12. 12.

    Here we consider \(C^r([0,1],\mathbf {L}(G))\) as a locally convex vector space with the pointwise operations and the topology of uniform convergence of the function and its derivatives on compact sets.

  13. 13.

    This is possible since the differentiable structure of the Butcher group turns it into a projective limit of finite-dimensional Lie groups. We will return to this phenomenon in Sect. 7.

References

  1. Connes, A., Marcolli, M.: Noncommutative geometry, quantum fields and motives. In: American Mathematical Society Colloquium Publications, vol. 55. American Mathematical Society, Providence, RI; Hindustan Book Agency, New Delhi (2008)

    Google Scholar 

  2. Brouder, C.: Trees, renormalization and differential equations. BIT Num. Anal. 44, 425–438 (2004)

    Article  MathSciNet  Google Scholar 

  3. Bogfjellmo, G., Schmeding, A.: The Lie group structure of the Butcher group. Found. Comput. Math. 17(1), 127–159 (2017)

    Article  MathSciNet  Google Scholar 

  4. Bogfjellmo, G., Dahmen, R., Schmeding, A.: Character groups of Hopf algebras as infinite-dimensional Lie groups. Ann. Inst. Fourier (Grenoble) 66(5), 2101–2155 (2016)

    Article  MathSciNet  Google Scholar 

  5. Ebrahimi-Fard, K., Lundervold, A., Munthe-Kaas, H.Z.: On the Lie enveloping algebra of a post-Lie algebra. J. Lie Theory 25(4), 1139–1165 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Hofmann, K.H., Morris, S.A.: The Lie theory of connected pro-Lie groups. In: EMS Tracts in Mathematics, vol. 2. EMS, Zürich (2007)

    Google Scholar 

  7. Cartier, P.: A primer of Hopf algebras. Frontiers in number theory, physics, and geometry. II, pp. 537–615. Springer, Berlin (2007)

    Google Scholar 

  8. Kassel, C.: Quantum groups. In: Graduate Texts in Mathematics, vol. 155. Springer-Verlag, New York (1995)

    Google Scholar 

  9. Majid, S.: Foundations of quantum group theory. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  10. Manchon, D.: Hopf algebras in renormalisation. In: Handbook of Algebra, vol. 5, pp. 365–427. Elsevier/North-Holland, Amsterdam (2008)

    Google Scholar 

  11. Sweedler, M.E.: Hopf algebras. In: Mathematics Lecture Note Series. W. A. Benjamin Inc, New York (1969)

    Google Scholar 

  12. Waterhouse, W.C.: Introduction to affine group schemes. In: Graduate Texts in Mathematics, vol. 66. Springer-Verlag, New York-Berlin (1979)

    Chapter  Google Scholar 

  13. Connes, A., Kreimer, D.: Hopf algebras, renormalization and noncommutative geometry. Commun. Math. Phys. 199, 203–242 (1998)

    Article  MathSciNet  Google Scholar 

  14. Chartier, P., Hairer, E., Vilmart, G.: Algebraic structures of B-series. Found. Comput. Math. 10(4), 407–427 (2010)

    Article  MathSciNet  Google Scholar 

  15. Munthe-Kaas, H.Z., Wright, W.M.: On the Hopf algebraic structure of Lie group integrators. Found. Comput. Math. 8(2), 227–257 (2008)

    Article  MathSciNet  Google Scholar 

  16. Reutenauer, C.: Free Lie algebras. In: London Mathematical Society Monographs. New Series, vol. 7. The Clarendon Press, Oxford University Press, New York. Oxford Science Publications (1993)

    Google Scholar 

  17. Lundervold, A., Munthe-Kaas, H.: Hopf algebras of formal diffeomorphisms and numerical integration on manifolds. In: Combinatorics and Physics. Contemporary Mathematics, vol. 539, pp. 295–324. American Mathematical Society, Providence, RI (2011)

    Google Scholar 

  18. Murua, A., Sanz-Serna, J.M.: Word series for dynamical systems and their numerical integrators. Found. Comput. Math. (2015). https://doi.org/10.1007/s10208-015-9295-3

    Article  MATH  Google Scholar 

  19. Knapp, A.W.: Lie groups, Lie algebras, and cohomology. In: Mathematical Notes, vol. 34. Princeton University Press, Princeton, NJ (1988)

    Google Scholar 

  20. Jarchow, H.: Locally convex spaces. In: Lecture Notes in Mathematics, vol. 417. Teubner, Stuttgart (1981)

    Google Scholar 

  21. Schaefer, H.H.: Topological vector spaces. Springer-Verlag, New York-Berlin. Third printing corrected, Graduate Texts in Mathematics, vol. 3 (1971)

    Book  Google Scholar 

  22. Michor, P.W.: Manifolds of differentiable mappings. In: Shiva Mathematics Series, vol. 3. Shiva Publishing Ltd., Nantwich (1980)

    Google Scholar 

  23. Keller, H.: Differential calculus in locally convex spaces. In: Lecture Notes in Mathematics, vol. 417. Springer Verlag, Berlin (1974)

    Google Scholar 

  24. Glöckner, H.: Infinite-dimensional Lie groups without completeness restrictions. In: Geometry and analysis on finite- and infinite-dimensional Lie groups (Będlewo, 2000), Banach Center Publications, vol. 55, pp. 43–59. Polish Academy of Sciences, Warsaw (2002)

    Article  MathSciNet  Google Scholar 

  25. Kriegl, A., Michor, P.W.: The convenient setting of global analysis. In: Mathematical Surveys and Monographs, vol. 53. American Mathematical Society, Providence, RI (1997)

    Google Scholar 

  26. Bertram, W., Glöckner, H., Neeb, K.-H.: Differential calculus over general base fields and rings. Expo. Math. 22(3), 213–282 (2004)

    Article  MathSciNet  Google Scholar 

  27. Milnor, J.: Remarks on infinite-dimensional Lie groups. In: Relativity groups and topology, II (Les Houches, 1983), pp. 1007–1057. North-Holland, Amsterdam (1984)

    Google Scholar 

  28. Glöckner, H.: Instructive examples of smooth, complex differentiable and complex analytic mappings into locally convex spaces. J. Math. Kyoto Univ. 47(3), 631–642 (2007)

    Article  MathSciNet  Google Scholar 

  29. Alzaareer, H., Schmeding, A.: Differentiable mappings on products with different degrees of differentiability in the two factors. Expo. Math. 33(2), 184–222 (2015)

    Article  MathSciNet  Google Scholar 

  30. Neeb, K.-H.: Towards a Lie theory of locally convex groups. Jpn. J. Math. 1(2), 291–468 (2006)

    Article  MathSciNet  Google Scholar 

  31. Trèves, F.: Topological vector spaces, distributions and kernels. Dover Publications, Inc., Mineola, NY. Unabridged republication of the 1967 original (2006)

    Google Scholar 

  32. Glöckner, H.: Algebras whose groups of units are Lie groups. Studia Math. 153(2), 147–177 (2002)

    Article  MathSciNet  Google Scholar 

  33. Glöckner, H., Neeb, K.-H.: When unit groups of continuous inverse algebras are regular Lie groups. Studia Math. 211(2), 95–109 (2012)

    Article  MathSciNet  Google Scholar 

  34. Milnor, J.W., Moore, J.C.: On the structure of Hopf algebras. Ann. Math. 2(81), 211–264 (1965)

    Article  MathSciNet  Google Scholar 

  35. Ebrahimi-Fard, K., Gracia-Bondía, J.M., Patras, F.: A Lie theoretic approach to renormalization. Comm. Math. Phys. 276(2), 519–549 (2007)

    Article  MathSciNet  Google Scholar 

  36. Dahmen, R., Schmeding, A.: The Lie group of real analytic diffeomorphisms is not real analytic. Studia Math. 229(2), 141–172 (2015)

    MathSciNet  MATH  Google Scholar 

  37. Floret, K.: Lokalkonvexe Sequenzen mit kompakten Abbildungen. J. Reine Angew. Math. 247, 155–195 (1971)

    MathSciNet  MATH  Google Scholar 

  38. Glöckner, H.: Direct limits of infinite-dimensional Lie groups. In: Developments and trends in infinite-dimensional Lie theory, Progress in Mathematics, vol. 288, pp. 243–280. Birkhäuser Boston, Inc., Boston, MA (2011)

    Google Scholar 

  39. Bonet, J., Pérez Carreras, P.: Barrelled locally convex spaces. In: North-Holland Mathematics Studies, vol. 131. North-Holland Publishing Co., Amsterdam. Notas de Matemática [Mathematical Notes], 113 (1987)

    Google Scholar 

  40. Grosse-Erdmann, K.-G.: The locally convex topology on the space of meromorphic functions. J. Aust. Math. Soc. Ser. A 59(3), 287–303 (1995)

    Article  MathSciNet  Google Scholar 

  41. Arens, R.: Linear topological division algebras. Bull. Am. Math. Soc. 53, 623–630 (1947)

    Article  MathSciNet  Google Scholar 

  42. Murua, A., Sanz-Serna, J.M.: Computing normal forms and formal invariants of dynamical systems by means of word series. Nonlinear Anal. 138, 326–345 (2016)

    Article  MathSciNet  Google Scholar 

  43. van Suijlekom, W.D.: Renormalization of gauge fields: a Hopf algebra approach. Comm. Math. Phys. 276(3), 773–798 (2007)

    Article  MathSciNet  Google Scholar 

  44. van Suijlekom, W.D.: The structure of renormalization Hopf algebras for gauge theories. I. representing Feynman graphs on BV-algebras. Comm. Math. Phys. 290(1), 291–319 (2009)

    Article  MathSciNet  Google Scholar 

  45. Chartier, P., Murua, A., Sanz-Serna, J.M.: Higher-order averaging, formal series and numerical integration II: the quasi-periodic case. Found. Comput. Math. 12(4), 471–508 (2012)

    Article  MathSciNet  Google Scholar 

  46. Murua, A.: The Hopf algebra of rooted trees, free Lie algebras, and Lie series. Found. Comput. Math. 6(4), 387–426 (2006)

    Article  MathSciNet  Google Scholar 

  47. Hairer, E., Lubich, C.: The life-span of backward error analysis for numerical integrators. Numerische Math. 76(4), 441–462 (1997)

    Article  MathSciNet  Google Scholar 

  48. Dahmen, R.: Analytic mappings between LB-spaces and applications in infinite-dimensional Lie theory. Math. Z. 266(1), 115–140 (2010)

    Article  MathSciNet  Google Scholar 

  49. Bogfjellmo, G., Schmeding, A.: The tame Butcher group. J. Lie Theor. 26(4), 1107–1144 (2016). cf. arXiv:1509.03452v3

  50. Munthe-Kaas, H.Z., Lundervold, A.: On post-Lie algebras, Lie-Butcher series and moving frames. Found. Comput. Math. 13(4), 583–613 (2013)

    Article  MathSciNet  Google Scholar 

  51. Chartier, P., Murua, A., Sanz-Serna, J.M.: Higher-order averaging, formal series and numerical integration III: error bounds. Found. Comput. Math. 15(2), 591–612 (2015)

    Article  MathSciNet  Google Scholar 

  52. Gray, W.S., Duffaut, L.A.: Espinosa, and K. Ebrahimi-Fard. Faà di Bruno Hopf algebra of the output feedback group for multivariable Fliess operators. Syst. Control Lett. 74, 64–73 (2014)

    Article  Google Scholar 

  53. Ebrahimi-Fard, K., Gray, W.S.: Center problem, Abel equation and the Faà di Bruno Hopf algebra for output feedback. Int. Math. Res. Not. IMRN 17, 5415–5450 (2017)

    Google Scholar 

  54. Dahmen, R., Schmeding, A.: Lie groups of controlled characters of combinatorial Hopf algebras (2018). arXiv:1609.02044v4

  55. Butcher, J.C.: An algebraic theory of integration methods. Math. Comp. 26, 79–106 (1972)

    Article  MathSciNet  Google Scholar 

  56. Butcher, J.C.: Numerical methods for ordinary differential equations, 2nd edn. Wiley, Chichester (2008)

    Book  Google Scholar 

  57. Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration. Structure-preserving algorithms for ordinary differential equations In: Springer Series in Computational Mathematics vol. 31, 2nd edn. Springer-Verlag, Berlin (2006)

    Google Scholar 

  58. Casas, F., Murua, A.: An efficient algorithm for computing the Baker-Campbell-Hausdorff series and some of its applications. J. Math. Phys. 50(3), 033513, 23 (2009)

    Article  MathSciNet  Google Scholar 

  59. Glöckner, H.: Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups. J. Funct. Anal. 194(2), 347–409 (2002)

    Article  MathSciNet  Google Scholar 

  60. Milnor, J.: On infinite-dimensional Lie groups, 1982. unpublished preprint

    Google Scholar 

  61. Hamilton, R.S.: The inverse function theorem of Nash and Moser. Bull. Amer. Math. Soc. (N.S.), 7(1), 65–222 (1982)

    Article  MathSciNet  Google Scholar 

  62. Glöckner, H.: Regularity properties of infinite-dimensional Lie groups, and semiregularity (2015). arXiv:1208.0715v3

  63. Hofmann, K.H., Morris, S.A.: Pro-Lie groups: a survey with open problems. Axioms 4(3), 294–312 (2015)

    Article  Google Scholar 

  64. Hofmann, K.H., Morris, S.A.: The structure of compact groups. In: De Gruyter Studies in Mathematics, vol. 25, 3rd edn. De Gruyter, Berlin (2013)

    Google Scholar 

  65. Yamabe, H.: On the conjecture of Iwasawa and Gleason. Ann. Math. 2(58), 48–54 (1953)

    Article  MathSciNet  Google Scholar 

  66. Michaelis, W.: Coassociative coalgebras. In: Handbook of Algebra, vol. 3, pp. 587–788. North-Holland, Amsterdam (2003)

    Google Scholar 

  67. Hofmann, K.H., Neeb, K.-H.: Pro-Lie groups which are infinite-dimensional Lie groups. Math. Proc. Cambridge Philos. Soc. 146(2), 351–378 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research on this paper was partially supported by the project Topology in Norway (NRC project 213458) and Structure Preserving Integrators, Discrete Integrable Systems and Algebraic Combinatorics (NRC project 231632). We thank J. M. Sanz-Serna for pointing out references to results from numerical analysis which the authors were unaware of. Finally, we thank the anonymous referees for many useful comments which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Schmeding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bogfjellmo, G., Dahmen, R., Schmeding, A. (2018). Overview of (pro-)Lie Group Structures on Hopf Algebra Character Groups. In: Ebrahimi-Fard, K., Barbero Liñán, M. (eds) Discrete Mechanics, Geometric Integration and Lie–Butcher Series. Springer Proceedings in Mathematics & Statistics, vol 267. Springer, Cham. https://doi.org/10.1007/978-3-030-01397-4_8

Download citation

Publish with us

Policies and ethics