Skip to main content

Post-Lie Algebras, Factorization Theorems and Isospectral Flows

  • Conference paper
  • First Online:
Discrete Mechanics, Geometric Integration and Lie–Butcher Series

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 267))

Abstract

In these notes we review and further explore the Lie enveloping algebra of a post-Lie algebra. From a Hopf algebra point of view, one of the central results, which will be recalled in detail, is the existence of second Hopf algebra structure. By comparing group-like elements in suitable completions of these two Hopf algebras, we derive a particular map which we dub post-Lie Magnus expansion. These results are then considered in the case of Semenov-Tian-Shansky’s double Lie algebra, where a post-Lie algebra is defined in terms of solutions of modified classical Yang–Baxter equation. In this context, we prove a factorization theorem for group-like elements. An explicit exponential solution of the corresponding Lie bracket flow is presented, which is based on the aforementioned post-Lie Magnus expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Brainstorming Workshop on “New Developments in Discrete Mechanics, Geometric Integration and Lie-Butcher Series”, May 25-28, 2015, ICMAT, Madrid, Spain. Supported by a grant from Iceland, Liechtenstein and Norway through the EEA Financial Mechanism as well as the project “Mathematical Methods for Ecology and Industrial Management” funded by Ayudas Fundación BBVA a Investigadores, Innovadores y Creadores Culturales.

  2. 2.

    In the following we will use \(*\)-notation to denote the differential of a smooth application \(\phi :M_1\rightarrow M_2\), if \(M_2\ne \mathbb F\). More precisely the differential of \(\phi \) at \(m\in M_1\) will be denoted as \(\phi _{*,m}\). Recall that this is a linear map between \(T_mM_1\) and \(T_{\phi (m)}M_2\) such that \((\phi _{*,m}v)f=v(f\circ \phi )\), for all \(v\in T_mM_1\) and all \(f\in C^\infty (M_2)\). On the other hand, if \(M_2=\mathbb F\), i.e., if \(\phi =H:M\rightarrow \mathbb F\) is a smooth function, we will write its differential at the point \(m\in M\) as \(dH_m\). Note that \(dH_m\in T^*_mM\).

  3. 3.

    Let \((\mathscr {I},\le )\) be a directed poset. Recall that a pair \((\{A_i\}_{i\in \mathscr {I}},\{f_{ij}\}_{i,j\in \mathscr {I}})\) is called an inverse or projective system of sets over \(\mathscr {I}\), if \(A_i\) is a set for each \(i\in \mathscr {I}\), \(f_{ij}:A_i\rightarrow A_j\) is a map defined for all \(j\le i\) such that \(f_{ij}\circ f_{jk}=f_{ik}:A_i\rightarrow A_k\), every time the corresponding maps are defined and \(f_{ii}={\text {id}}_{A_i}\). Then the inverse or the projective limit of the inverse system \((\{A_i\}_{i\in \mathscr {I}},\{f_{ij}\}_{i,j\in \mathscr {I}})\) is

    $$\begin{aligned} \varprojlim A_i=\{\xi \in \prod _{i\in \mathscr {I}}A_i\,\vert \, f_{ij}(p_i(\xi ))=p_j(\xi ),\,\forall j\le i\}, \end{aligned}$$

    where, for each \(i\in \mathscr {I}\), \(p_i:\prod _{i\in \mathscr {I}} A_i\rightarrow A_i\) is the canonical projection. This definition is easily specialized to define the inverse limit in the category of algebras, co-algebras and Hopf algebras.

  4. 4.

    Recall that if M is a \(\mathbb Z\)-module endowed with a decreasing filtration, \(M=M_0\supset M_1\supset M_2\supset \cdots \), then a sequence \((x_k)_{k\in \mathbb N}\) is called a Cauchy sequence if for each r there exists \(N_r\), such that, if \(n,m>N_r\), then \(x_n-x_m \in M_r\). This amounts to saying, that if nm are sufficiently large, then \(x_n+M_r=x_m+M_r\). This implies that \((x_k)_{k\in \mathbb N}\) is a coherent sequence, i.e., it belongs to \(\hat{M}=\varprojlim M/M_k\). In other words, every Cauchy sequence is convergent in \(\hat{M}\). These considerations can be extended verbatim to the case of complete augmented algebras.

  5. 5.

    Formula (36) is known as the Bianchi’s 1st identity. Among many other identities fulfilled by the covariant derivatives of the torsion and curvature of a linear connection, the so called Bianchi’s 2nd identity is worth to recall:

    $$ \sum _{\circlearrowleft }\big ((\nabla _X \mathrm {R})(Y,Z)+\mathrm {R}(\mathrm {T}(X,Y),Z)\big ) =0,\quad \forall X,Y,Z\in \mathfrak X_M. $$

    .

  6. 6.

    One can define the notion of a Poisson algebra in a more algebraic setting, without any reference to some underlying manifold. More precisely one say that a associative and commutative algebra \((A,\cdot )\) is a Poisson algebra if there exists a \(\mathbb F\)-bilinear, skew-symmetric map \(\{\cdot ,\cdot \}:A\otimes _\mathbb F A\rightarrow A\), which is a bi-derivation of \((A,\cdot )\) and which fulfills the Jacobi identity. Such a bilinear map is called a Poisson bracket.

  7. 7.

    The bracket \([\cdot ,\cdot ]_{SN}\) just introduced extends to \(\varLambda ^\bullet TP\), the full exterior algebra of TP, and is called the Schouten–Nijenhuis bracket.

  8. 8.

    The symplectic foliation of a Poisson manifold \((P,\{\cdot ,\cdot \})\) is the generalized distribution in the sense of Sussmann defined on P by the Hamiltonian vector fields. Each leaf of this distribution is an immersed symplectic manifold, i.e., it is an immersed submanifold of P which carries a symplectic structure. See Example 7, which is defined by the restriction to the leaf of the Poisson structure.

  9. 9.

    Note that this is not a restriction, since, by the Ado’s theorem, every finite dimensional Lie algebra admits a faithful finite dimensional representation.

  10. 10.

    Recall that a quadratic Lie algebra \((\mathfrak g,B)\) is a Lie algebra endowed with a non-degenerate, \(\mathfrak g\)-invariant bilinear form \(B: \mathfrak g\otimes \mathfrak g \rightarrow \mathfrak g\), i.e., B is a bilinear form such that (1) if \(x \in \mathfrak g\) is such that \(B(x,y)=0\) for all \(y \in \mathfrak g\), then \(x=0\) and 2) \(B([x,y],z)+B(y,[x,z])=0\) for all \(x,y,z\in \mathfrak g\).

References

  1. Babelon, O., Bernard, D., Talon, M.: Introduction to classical integrable systems. Cambridge Monographs on Mathematical Physics. Cambridge University Press (2007)

    Google Scholar 

  2. Bai, C., Guo, L., Ni, X.: Nonabelian generalized Lax pairs, the classical Yang-Baxter equation and PostLie algebras. Commun. Math. Phys. 297(2), 553 (2010)

    Article  MathSciNet  Google Scholar 

  3. Blanes, S., Casas, F., Oteo, J.A., Ros, J.: Magnus expansion: mathematical study and physical applications. Phys. Rep. 470, 151 (2009)

    Article  MathSciNet  Google Scholar 

  4. Burde, D.: Left-symmetric algebras, or pre-Lie algebras in geometry and physics. Central Eur. J. Math. 4(3), 323 (2006)

    Article  MathSciNet  Google Scholar 

  5. Cartan, E., Schouten, J.A.: On the Geometry of the Group-manifold of simple and semi-simple groups. In: Proceedings of the Royal Academy of Amsterdam, vol. XXIX (1926)

    Google Scholar 

  6. Cartier, P.: A primer of Hopf algebras. In: Frontiers in Number Theory, Physics, and Geometry II, pp. 537–615. Springer, Berlin, Heidelberg (2007)

    Google Scholar 

  7. Cartier, P.: Vinberg algebras. Lie groups and combinatorics. Clay Math. Proc. 11, 107 (2011)

    Google Scholar 

  8. Casas, F.: Numerical integration methods for the double-bracket flow. J. Comput. Appl. Math. 166(2), 477 (2004)

    Article  MathSciNet  Google Scholar 

  9. Casas, F., Iserles, A.: Explicit Magnus expansions for nonlinear equations. J. Phys. A: Math. Gen. 39, 5445 (2006)

    Article  MathSciNet  Google Scholar 

  10. Chapoton, F., Livernet, M.: Pre-Lie algebras and the rooted trees operad. Int. Math. Res. Not. 2001, 395 (2001)

    Article  MathSciNet  Google Scholar 

  11. Chapoton, F., Patras, F.: Enveloping algebras of preLie algebras, Solomon idempotents and the Magnus formula. Int. J. Algebra Comput. 23(4), 853 (2013)

    Article  MathSciNet  Google Scholar 

  12. Chu, M.T., Norris, L.K.: Isospectral flows and abstract matrix factorizations. SIAM J. Numer. Anal. 25, 1383 (1988)

    Article  MathSciNet  Google Scholar 

  13. Drinfeld, V.G.: Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang–Baxter equation. Sov. Math. Dokl. 27(1) (1983)

    Google Scholar 

  14. Duistermaat, J.J., Kolk, J.A.: Lie Groups, Universitext. Springer, Berlin (2000)

    Book  Google Scholar 

  15. Ebrahimi-Fard, K., Guo, L., Manchon, D.: Birkhoff type decompositions and the Baker-Campbell-Hausdorff recursion. Commun. Math. Phys. 267, 821 (2006)

    Article  MathSciNet  Google Scholar 

  16. Ebrahimi-Fard, K., Lundervold, A., Manchon, D.: Noncommutative Bell polynomials, quasideterminants and incidence Hopf algebras. Int. J. Algebra Comput. 24(5), 671 (2014)

    Article  MathSciNet  Google Scholar 

  17. Ebrahimi-Fard, K., Lundervold, A., Munthe-Kaas, H.Z.: On the Lie enveloping algebra of a post-Lie algebra. J. Lie Theory 25(4), 1139 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Ebrahimi-Fard, K., Lundervold, A., Mencattini, I., Munthe-Kaas, H.Z.: Post-Lie algebras and isospectral flows. SIGMA 25(11), 093 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Ebrahimi-Fard, K., Mencattini, I., Munthe-Kaas, H.Z.: Post-Lie algebras and factorization theorems. arXiv:1701.07786

  20. Faybusovich, L.E.: QR-type factorizations, the Yang-Baxter equation and an eigenvalue problem of control theory. Linear Algebra Appl. 122–124, 943 (1989)

    Article  MathSciNet  Google Scholar 

  21. Fuks, D.B.: Cohomology of Infinite Dimensional Lie Algebras Consultant Bureau, New York (1986)

    Google Scholar 

  22. Lax, P.D.: Outline of a theory of KdV equation in Recent mathematical methods in nonlinear wave propagation (Montecatini Terme 1994). Lecture Notes in Mathematics, vol. 1640, pp. 70–102. Springer, Berlin (1996)

    Google Scholar 

  23. Lundervold, A., Munthe-Kaas, H.Z.: On post-Lie algebras, Lie–Butcher series and moving frames. Found. Comput. Math. 13(4), 583 (2013)

    Google Scholar 

  24. Lundervold, A., Munthe-Kaas, H.Z.: On algebraic structures of numerical integration on vector spaces and manifolds. In: Ebrahimi-Fard, K., Fauvet, F. (eds.) Faà di Bruno Hopf Algebras, Dyson–Schwinger Equations, and Lie–Butcher Series. IRMA Lectures in Mathematics and Theoretical Physics, vol. 21 (2015). Eur. Math. Soc. Strasbourg, France

    Google Scholar 

  25. Laurent-Gengoux, C., Pichereau, A., Vanhaecke, P.: Poisson Structures, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg (2013)

    MATH  Google Scholar 

  26. Manchon, D.: A short survey on pre-Lie algebras, in Noncommutative Geometry and Physics: renormalisation, motives, index theory. In: Carey A. (ed) E. Schrödinger Institut Lectures in Mathematics and Physics. European Mathematical Society (2011)

    Google Scholar 

  27. Oudom, J.-M., Guin, D.: On the Lie enveloping algebra of a pre-Lie algebra. J. K-theory: K-theory Appl. Algebra Geom. Topol. 2(1), 147 (2008)

    Google Scholar 

  28. Postnikov, M.M.: Lie Groups and Lie Algebras. Lectures in Geometry. Semester V. Mir, Moscow (1986)

    Google Scholar 

  29. Postnikov, M.M.: Geometry VI. Riemannian geometry. Encyclopaedia of Mathematical Sciences, vol. 9. Springer, Berlin (2001)

    Book  Google Scholar 

  30. Quillen, D.: Rational homotopy theory. Ann. Math. 90(2), 205 (1969)

    Article  MathSciNet  Google Scholar 

  31. Reshetikhin, Y.N., Semenov-Tian-Shansly, M.A.: Quantum R-matrices and factorization problems. J. Geom. Phys. 5(4), 533 (1988)

    Article  MathSciNet  Google Scholar 

  32. Reutenauer, C.: Free Lie Algebras, London Mathematical Society Monographs. New Series, 7, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1993)

    Google Scholar 

  33. Semenov-Tian-Shansky, M.A.: What is a classical \(r\)-matrix? Funct. Ana. Appl. 17, 254 (1983)

    Google Scholar 

  34. Semenov Tian-Shansky, M.A.: Lectures on R-matrices, Poisson-Lie groups and integrable systems. In: Lectures on Integrable Systems, Sophia-Antipolis, vol. 1994, pp. 269–317. World Scientific Publishing, River Edge, NJ (1991)

    Google Scholar 

  35. Semenov-Tian-Shansky, M.A.: Classical \(r\)-matrix and quantization. Journal of Soviet Mathematics 31(6), 3411 (1985)

    Article  Google Scholar 

  36. Semenov-Tian-Shansky, M.A.: Quantum and classical integrable systems. In: Integrability of Nonlinear Systems (Pondicherry, 1996). Lecture Notes in Physics, vol. 495, pp. 314–377. Springer, Berlin (1997)

    Google Scholar 

  37. Suris, Y.B.: The Problem of Integrable Discretization: Hamiltonian Approach, Progress in Mathematics. Birkhäuser, Basel (2003)

    Book  Google Scholar 

  38. Sweedler, M.E.: Hopf algebras, Mathematical Lectures Notes. W.A. Benjamin, Inc., New York (1969)

    Google Scholar 

  39. Vallette, B.: Homology of generalized partition posets. J. Pure Appl. Algebra 208(2), 699 (2007)

    Article  MathSciNet  Google Scholar 

  40. Warner, F.W.: Foundations of differentiable manifolds and Lie groups, Graduate Texts in Mathematics. Springer, New York, Berlin (1983)

    Book  Google Scholar 

  41. Watkins, D.S.: Isospectral flows. SIAM Rev. 26, 379 (1984)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author acknowledges support from the Spanish government under the project MTM2013-46553-C3-2-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Mencattini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ebrahimi-Fard, K., Mencattini, I. (2018). Post-Lie Algebras, Factorization Theorems and Isospectral Flows. In: Ebrahimi-Fard, K., Barbero Liñán, M. (eds) Discrete Mechanics, Geometric Integration and Lie–Butcher Series. Springer Proceedings in Mathematics & Statistics, vol 267. Springer, Cham. https://doi.org/10.1007/978-3-030-01397-4_7

Download citation

Publish with us

Policies and ethics