Advertisement

Post-Lie Algebras, Factorization Theorems and Isospectral Flows

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 267)

Abstract

In these notes we review and further explore the Lie enveloping algebra of a post-Lie algebra. From a Hopf algebra point of view, one of the central results, which will be recalled in detail, is the existence of second Hopf algebra structure. By comparing group-like elements in suitable completions of these two Hopf algebras, we derive a particular map which we dub post-Lie Magnus expansion. These results are then considered in the case of Semenov-Tian-Shansky’s double Lie algebra, where a post-Lie algebra is defined in terms of solutions of modified classical Yang–Baxter equation. In this context, we prove a factorization theorem for group-like elements. An explicit exponential solution of the corresponding Lie bracket flow is presented, which is based on the aforementioned post-Lie Magnus expansion.

Keywords

Post-Lie algebra Universal enveloping algebra Hopf algebra Magnus expansion Classical r-matrices Classical Yang–Baxter equation Factorization theorems Isospectral flow 

MSC Classification

16T05 16T10 16T25 16T30 17D25 

Notes

Acknowledgements

The first author acknowledges support from the Spanish government under the project MTM2013-46553-C3-2-P.

References

  1. 1.
    Babelon, O., Bernard, D., Talon, M.: Introduction to classical integrable systems. Cambridge Monographs on Mathematical Physics. Cambridge University Press (2007)Google Scholar
  2. 2.
    Bai, C., Guo, L., Ni, X.: Nonabelian generalized Lax pairs, the classical Yang-Baxter equation and PostLie algebras. Commun. Math. Phys. 297(2), 553 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Blanes, S., Casas, F., Oteo, J.A., Ros, J.: Magnus expansion: mathematical study and physical applications. Phys. Rep. 470, 151 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Burde, D.: Left-symmetric algebras, or pre-Lie algebras in geometry and physics. Central Eur. J. Math. 4(3), 323 (2006)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cartan, E., Schouten, J.A.: On the Geometry of the Group-manifold of simple and semi-simple groups. In: Proceedings of the Royal Academy of Amsterdam, vol. XXIX (1926)Google Scholar
  6. 6.
    Cartier, P.: A primer of Hopf algebras. In: Frontiers in Number Theory, Physics, and Geometry II, pp. 537–615. Springer, Berlin, Heidelberg (2007)Google Scholar
  7. 7.
    Cartier, P.: Vinberg algebras. Lie groups and combinatorics. Clay Math. Proc. 11, 107 (2011)Google Scholar
  8. 8.
    Casas, F.: Numerical integration methods for the double-bracket flow. J. Comput. Appl. Math. 166(2), 477 (2004)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Casas, F., Iserles, A.: Explicit Magnus expansions for nonlinear equations. J. Phys. A: Math. Gen. 39, 5445 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Chapoton, F., Livernet, M.: Pre-Lie algebras and the rooted trees operad. Int. Math. Res. Not. 2001, 395 (2001)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Chapoton, F., Patras, F.: Enveloping algebras of preLie algebras, Solomon idempotents and the Magnus formula. Int. J. Algebra Comput. 23(4), 853 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Chu, M.T., Norris, L.K.: Isospectral flows and abstract matrix factorizations. SIAM J. Numer. Anal. 25, 1383 (1988)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Drinfeld, V.G.: Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang–Baxter equation. Sov. Math. Dokl. 27(1) (1983)Google Scholar
  14. 14.
    Duistermaat, J.J., Kolk, J.A.: Lie Groups, Universitext. Springer, Berlin (2000)CrossRefGoogle Scholar
  15. 15.
    Ebrahimi-Fard, K., Guo, L., Manchon, D.: Birkhoff type decompositions and the Baker-Campbell-Hausdorff recursion. Commun. Math. Phys. 267, 821 (2006)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ebrahimi-Fard, K., Lundervold, A., Manchon, D.: Noncommutative Bell polynomials, quasideterminants and incidence Hopf algebras. Int. J. Algebra Comput. 24(5), 671 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ebrahimi-Fard, K., Lundervold, A., Munthe-Kaas, H.Z.: On the Lie enveloping algebra of a post-Lie algebra. J. Lie Theory 25(4), 1139 (2015)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Ebrahimi-Fard, K., Lundervold, A., Mencattini, I., Munthe-Kaas, H.Z.: Post-Lie algebras and isospectral flows. SIGMA 25(11), 093 (2015)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Ebrahimi-Fard, K., Mencattini, I., Munthe-Kaas, H.Z.: Post-Lie algebras and factorization theorems. arXiv:1701.07786
  20. 20.
    Faybusovich, L.E.: QR-type factorizations, the Yang-Baxter equation and an eigenvalue problem of control theory. Linear Algebra Appl. 122–124, 943 (1989)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Fuks, D.B.: Cohomology of Infinite Dimensional Lie Algebras Consultant Bureau, New York (1986)Google Scholar
  22. 22.
    Lax, P.D.: Outline of a theory of KdV equation in Recent mathematical methods in nonlinear wave propagation (Montecatini Terme 1994). Lecture Notes in Mathematics, vol. 1640, pp. 70–102. Springer, Berlin (1996)Google Scholar
  23. 23.
    Lundervold, A., Munthe-Kaas, H.Z.: On post-Lie algebras, Lie–Butcher series and moving frames. Found. Comput. Math. 13(4), 583 (2013)Google Scholar
  24. 24.
    Lundervold, A., Munthe-Kaas, H.Z.: On algebraic structures of numerical integration on vector spaces and manifolds. In: Ebrahimi-Fard, K., Fauvet, F. (eds.) Faà di Bruno Hopf Algebras, Dyson–Schwinger Equations, and Lie–Butcher Series. IRMA Lectures in Mathematics and Theoretical Physics, vol. 21 (2015). Eur. Math. Soc. Strasbourg, FranceGoogle Scholar
  25. 25.
    Laurent-Gengoux, C., Pichereau, A., Vanhaecke, P.: Poisson Structures, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg (2013)zbMATHGoogle Scholar
  26. 26.
    Manchon, D.: A short survey on pre-Lie algebras, in Noncommutative Geometry and Physics: renormalisation, motives, index theory. In: Carey A. (ed) E. Schrödinger Institut Lectures in Mathematics and Physics. European Mathematical Society (2011)Google Scholar
  27. 27.
    Oudom, J.-M., Guin, D.: On the Lie enveloping algebra of a pre-Lie algebra. J. K-theory: K-theory Appl. Algebra Geom. Topol. 2(1), 147 (2008)Google Scholar
  28. 28.
    Postnikov, M.M.: Lie Groups and Lie Algebras. Lectures in Geometry. Semester V. Mir, Moscow (1986)Google Scholar
  29. 29.
    Postnikov, M.M.: Geometry VI. Riemannian geometry. Encyclopaedia of Mathematical Sciences, vol. 9. Springer, Berlin (2001)CrossRefGoogle Scholar
  30. 30.
    Quillen, D.: Rational homotopy theory. Ann. Math. 90(2), 205 (1969)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Reshetikhin, Y.N., Semenov-Tian-Shansly, M.A.: Quantum R-matrices and factorization problems. J. Geom. Phys. 5(4), 533 (1988)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Reutenauer, C.: Free Lie Algebras, London Mathematical Society Monographs. New Series, 7, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1993)Google Scholar
  33. 33.
    Semenov-Tian-Shansky, M.A.: What is a classical \(r\)-matrix? Funct. Ana. Appl. 17, 254 (1983)Google Scholar
  34. 34.
    Semenov Tian-Shansky, M.A.: Lectures on R-matrices, Poisson-Lie groups and integrable systems. In: Lectures on Integrable Systems, Sophia-Antipolis, vol. 1994, pp. 269–317. World Scientific Publishing, River Edge, NJ (1991)Google Scholar
  35. 35.
    Semenov-Tian-Shansky, M.A.: Classical \(r\)-matrix and quantization. Journal of Soviet Mathematics 31(6), 3411 (1985)CrossRefGoogle Scholar
  36. 36.
    Semenov-Tian-Shansky, M.A.: Quantum and classical integrable systems. In: Integrability of Nonlinear Systems (Pondicherry, 1996). Lecture Notes in Physics, vol. 495, pp. 314–377. Springer, Berlin (1997)Google Scholar
  37. 37.
    Suris, Y.B.: The Problem of Integrable Discretization: Hamiltonian Approach, Progress in Mathematics. Birkhäuser, Basel (2003)CrossRefGoogle Scholar
  38. 38.
    Sweedler, M.E.: Hopf algebras, Mathematical Lectures Notes. W.A. Benjamin, Inc., New York (1969)Google Scholar
  39. 39.
    Vallette, B.: Homology of generalized partition posets. J. Pure Appl. Algebra 208(2), 699 (2007)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Warner, F.W.: Foundations of differentiable manifolds and Lie groups, Graduate Texts in Mathematics. Springer, New York, Berlin (1983)CrossRefGoogle Scholar
  41. 41.
    Watkins, D.S.: Isospectral flows. SIAM Rev. 26, 379 (1984)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Mathematical SciencesNorwegian University of Science and Technology – NTNUTrondheimNorway
  2. 2.Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo (USP)São CarlosBrazil

Personalised recommendations