Skip to main content

Computational Aspects of Some Exponential Identities

  • Conference paper
  • First Online:
Book cover Discrete Mechanics, Geometric Integration and Lie–Butcher Series

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 267))

  • 583 Accesses

Abstract

The notion of the exponential of a matrix is usually introduced in elementary textbooks on ordinary differential equations when solving a constant coefficients linear system, also providing some of its properties and in particular one that does not hold unless the involved matrices commute. Several problems arise indeed from this fundamental issue, and it is our purpose to review some of them in this work, namely: (i) is it possible to write the product of two exponential matrices as the exponential of a matrix? (ii) is it possible to “disentangle” the exponential of a sum of two matrices? (iii) how to write the solution of a time-dependent linear differential system as the exponential of a matrix? To address these problems the Baker–Campbell–Hausdorff series, the Zassenhaus formula and the Magnus expansion are formulated and efficiently computed, paying attention to their convergence. Finally, several applications are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover (1965)

    Google Scholar 

  2. Albert, L., Harinck, P., Torossian, C.: Solution non universelle pour le probleme KV-78. J. Lie Theory 617–626 (2008)

    Google Scholar 

  3. Alekseev, A., Meinrenken, E.: On the Kashiwara-Vergne conjecture. Invent. Math. 164, 615–634 (2006)

    Article  MathSciNet  Google Scholar 

  4. Alekseev, A., Torossian, C.: The Kashiwara-Vergne conjecture and Drinfeld’s associators. Ann. Math. 175, 415–463 (2012)

    Article  MathSciNet  Google Scholar 

  5. Bader, P., Iserles, A., Kropielnicka, K., Singh, P.: Effective approximation for the semiclassical Schrödinger equation. Found. Comput. Math. 14, 689–720 (2014)

    Article  MathSciNet  Google Scholar 

  6. Baker, H.F.: Alternant and continuous groups. Proc. Lond. Math. Soc. (Second series) 3, 24–47 (1905)

    Article  MathSciNet  Google Scholar 

  7. Bayen, F.: On the convergence of the Zassenhaus formula. Lett. Math. Phys. 3, 161–167 (1979)

    Article  MathSciNet  Google Scholar 

  8. Blanes, S., Casas, F.: On the convergence and optimization of the Baker-Campbell-Hausdorff formula. Linear Algebra Appl. 378, 135–158 (2004)

    Article  MathSciNet  Google Scholar 

  9. Blanes, S., Casas, F.: A Concise Introduction to Geometric Numerical Integration. CRC Press (2016)

    Google Scholar 

  10. Blanes, S., Casas, F., Murua, A.: Splitting and composition methods in the numerical integration of differential equations. Bol. Soc. Esp. Mat. Apl. 45, 89–145 (2008)

    MathSciNet  MATH  Google Scholar 

  11. Blanes, S., Casas, F., Oteo, J.A., Ros, J.: The Magnus expansion and some of its applications. Phys. Rep. 470, 151–238 (2009)

    Article  MathSciNet  Google Scholar 

  12. Blanes, S., Casas, F., Ros, J.: High order optimized geometric integrators for linear differential equations. BIT 42, 262–284 (2002)

    Article  MathSciNet  Google Scholar 

  13. Bokut, L., Chibrikov, E.S.: Lyndon–Shirshov words, Gröbner–Shirshov bases, and free Lie algebras. In: Sabinin, L., Sbitneva, L., Shestakov, I. (eds.) Non-Associative Algebra and its Applications, pp. 17–39. Chapman & Hall/CRC Press (2006)

    Google Scholar 

  14. Bonfiglioli, A., Fulci, R.: Topics in Noncommutative Algebra. The Theorem of Campbell, Baker, Hausdorff and Dynkin. Lecture Notes in Mathematics. Springer (2012)

    Google Scholar 

  15. Bourbaki, N.: Lie Groups and Lie Algebras, Chapters 1–3. Springer (1989)

    Google Scholar 

  16. Burgunder, E.: Eulerian idempotent and Kashiwara-Vergne conjecture. Ann. Inst. Fourier 58, 1153–1184 (2008)

    Article  MathSciNet  Google Scholar 

  17. Campbell, J.E.: On a law of combination of operators. Proc. Lond. Math. Soc. 29, 14–32 (1898)

    MathSciNet  MATH  Google Scholar 

  18. Casas, F.: Sufficient conditions for the convergence of the Magnus expansion. J. Phys. A: Math. Theor. 40, 15001–15017 (2007)

    Article  MathSciNet  Google Scholar 

  19. Casas, F., Iserles, A.: Explicit Magnus expansions for nonlinear equations. J. Phys. A: Math. Gen. 39, 5445–5461 (2006)

    Article  MathSciNet  Google Scholar 

  20. Casas, F., Murua, A.: An efficient algorithm for computing the Baker-Campbell-Hausdorff series and some of its applications. J. Math. Phys. 50, 033513 (2009)

    Article  MathSciNet  Google Scholar 

  21. Casas, F., Murua, A., Nadinic, M.: Efficient computation of the Zassenhaus formula. Comput. Phys. Commun. 183, 2386–2391 (2012)

    Article  MathSciNet  Google Scholar 

  22. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw Hill (1955)

    Google Scholar 

  23. Day, J., So, W., Thompson, R.C.: Some properties of the Campbell Baker Hausdorff series. Linear Multilinear Algebra 29, 207–224 (1991)

    Article  MathSciNet  Google Scholar 

  24. Dynkin, E.B.: Evaluation of the coefficients of the Campbell-Hausdorff formula. Dokl. Akad. Nauk. SSSR 57, 323–326 (1947)

    Google Scholar 

  25. Dynkin, E.B.: Calculation of the coefficients in the Campbell–Hausdorff series. In: Dynkin, E.B., Yushkevich, A.A., Seitz, G.M., Onishchik, A.L. (eds.) Selected Papers of E.B. Dynkin with Commentary, pp. 31–35. American Mathematical Society (2000)

    Google Scholar 

  26. Ebrahimi-Fard, K., Manchon, D.: A Magnus- and Fer-type formula in dendriform algebras. Found. Comput. Math. 9, 295–316 (2009)

    Article  MathSciNet  Google Scholar 

  27. Ebrahimi-Fard, K., Manchon, D.: Twisted dendriform algebras and the pre-Lie Magnus expansion. J. Pure Appl. Algebra 215, 2615–2627 (2011)

    Article  MathSciNet  Google Scholar 

  28. Ebrahimi-Fard, K., Manchon, D.: The Manus expansion, trees and Knuth’s rotation correspondence. Found. Comput. Math. 14, 1–25 (2014)

    Article  MathSciNet  Google Scholar 

  29. Geiser, J., Tanoglu, G.: Operator-splitting methods via the Zassenhaus product formula. Appl. Math. Comput. 217, 4557–4575 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Geiser, J., Tanoglu, G., Guecueyenen, N.: Higher order operator-splitting methods via Zassenhaus product formula: theory and applications. Comput. Math. Appl. 62, 1994–2015 (2011)

    Article  MathSciNet  Google Scholar 

  31. Goldberg, K.: The formal power series for \(\log (e^x e^y)\). Duke Math. J. 23, 13–21 (1956)

    Article  MathSciNet  Google Scholar 

  32. Hairer, E., Lubich, Ch., Wanner, G.: Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer (2006)

    Google Scholar 

  33. Hall, B.C.: Lie Groups, Lie Algebras, and Representations, An Elementary Introduction. Springer (2003)

    Google Scholar 

  34. Hausdorff, F.: Die symbolische exponential formel in der Gruppen theorie. Leipziger Ber. 58, 19–48 (1906)

    Google Scholar 

  35. Hörmander, L.: Hypoelliptic second order differential equations. Acta Math. 119, 147–171 (1967)

    Article  MathSciNet  Google Scholar 

  36. Iserles, A., Munthe-Kaas, H.Z., Nørsett, S.P., Zanna, A.: Lie-group methods. Acta Numer. 9, 215–365 (2000)

    Article  MathSciNet  Google Scholar 

  37. Jacobson, N.: Lie Algebras. Dover Publications Inc, New York (1979)

    MATH  Google Scholar 

  38. Kashiwara, M., Vergne, M.: The Campbell-Hausdorff formula and invariant hyperfunctions. Invent. Math. 47, 249–272 (1978)

    Article  MathSciNet  Google Scholar 

  39. Klarsfeld, S., Oteo, J.A.: Recursive generation of higher-order terms in the Magnus expansion. Phys. Rev. A 39, 3270–3273 (1989)

    Article  Google Scholar 

  40. Kolsrud, M.: Maximal reductions in the Baker-Hausdorff formula. J. Math. Phys. 34(1), 270–285 (1993)

    Article  MathSciNet  Google Scholar 

  41. Lévy, A.A.: Une généralisation de l’identité de Jacobi et son application á l’explicitation de la récurrence de Magnus pour la formule Baker-Hausdorff discrète. C. R. Acad. Sci. Paris A 275, 877–880 (1972)

    MathSciNet  Google Scholar 

  42. Lothaire, M.: Combinatorics on Words. Cambridge University Press (1983)

    Google Scholar 

  43. Magnus, W.: On the exponential solution of differential equations for a linear operator. Commun. Pure and Appl. Math. VII, 649–673 (1954)

    Article  MathSciNet  Google Scholar 

  44. Manchon, D.: A short survey on pre-Lie algebras. In: Carey, A. (ed.) Noncommutative Geometry and Physics: Renormalisation, Motives, Index Theory. European Mathematical Society (2011)

    Google Scholar 

  45. McLachlan, R.I., Quispel, R.: Splitting methods. Acta Numer. 11, 341–434 (2002)

    Article  MathSciNet  Google Scholar 

  46. Michel, J.: Bases des algèbres de Lie libre et série de Hausdorff. Séminaire Dubreil. Algèbre 27, 1–9 (1974)

    Google Scholar 

  47. Moan, P.C., Niesen, J.: Convergence of the Magnus series. Found. Comput. Math. 8, 291–301 (2008)

    Article  MathSciNet  Google Scholar 

  48. Moler, C.B., Van Loan, C.F.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45, 3–49 (2003)

    Article  MathSciNet  Google Scholar 

  49. Munthe-Kaas, H., Owren, B.: Computations in a free Lie algebra. Philos. Trans. R. Soc. A 357, 957–981 (1999)

    Article  MathSciNet  Google Scholar 

  50. Murua, A.: The Hopf algebra of rooted trees, free Lie algebras, and Lie series. Found. Comput. Math. 6, 387–426 (2006)

    Article  MathSciNet  Google Scholar 

  51. Nadinic, M.: Métodos de Integración Geométrica. Análisis y Algoritmos Numéricos, Ph.D. thesis, Universitat Jaume I (2016)

    Google Scholar 

  52. Newman, M., So, W., Thompson, R.C.: Convergence domains for the Campbell-Baker-Hausdorff formula. Linear Multilinear Algebra 24, 301–310 (1989)

    Article  MathSciNet  Google Scholar 

  53. Oteo, J.A.: The Baker-Campbell-Hausdorff formula and nested commutator identities. J. Math. Phys. 32(2), 419–424 (1991)

    Article  MathSciNet  Google Scholar 

  54. Perko, L.: Differential Equations and Dynamical Systems, 2nd edn. Springer (1996)

    Google Scholar 

  55. Quesne, C.: Disentangling \(q\)-exponentials: a general approach. Int. J. Theor. Phys. 43, 545–559 (2004)

    Article  MathSciNet  Google Scholar 

  56. Reed, M., Simon, B.: Methods of Modern Mathematical Physics I: Functional Analysis. Academic Press (1980)

    Google Scholar 

  57. Reutenauer, C.: Free Lie Algebras, vol. 7. Oxford University Press (1993)

    Google Scholar 

  58. Rossmann, W.: Lie Groups. An Introduction Through Linear Groups. Oxford University Press (2002)

    Google Scholar 

  59. Rouvière, F.: Démonstration de la conjecture de Kashiwara-Vergne pour \({\rm SL}_2(\mathbb{R}{\rm )}\). C. R. Acad. Sci. Paris 292, 657–660 (1981)

    Google Scholar 

  60. Rouvière, F.: Espaces symétriques et méthode de Kashiwara-Vergne. Ann. Sci. École Norm. Sup. 19, 553–581 (1986)

    Article  MathSciNet  Google Scholar 

  61. Suzuki, M.: On the convergence of exponential operators–the Zassenhaus formula, BCH formula and systematic approximants. Commun. Math. Phys. 57, 193–200 (1977)

    Article  MathSciNet  Google Scholar 

  62. Thompson, R.C.: Cyclic relations and the Goldberg coefficients in the Campbell-Baker-Hausdorff formula. Proc. Am. Math. Soc. 86, 12–14 (1982)

    MathSciNet  MATH  Google Scholar 

  63. Thompson, R.C.: Convergence proof for Goldberg’s exponential series. Linear Algebra Appl. 121, 3–7 (1989)

    Article  MathSciNet  Google Scholar 

  64. Torossian, C.: Sur la conjecture combinatoire de Kashiwara-Vergne. J. Lie Theory 12, 597–616 (2002)

    MathSciNet  MATH  Google Scholar 

  65. Trotter, H.F.: On the product of semi-groups of operators. Proc. Am. Math. Soc. 10, 545–551 (1959)

    Article  MathSciNet  Google Scholar 

  66. Varadarajan, V.S.: Lie Groups, Lie Algebras, and Their Representations. Springer (1984)

    Google Scholar 

  67. Viennot, X.G.: Algèbres de Lie Libres et monoïdes libres. Lecture Notes in Mathematics, vol. 691. Springer (1978)

    Google Scholar 

  68. Wermuth, E.M.E.: Commuting matrix exponentials: problem 88–1. SIAM Rev. 31, 125–126 (1989)

    Article  Google Scholar 

  69. Wermuth, E.M.E.: Two remarks on matrix exponentials. Linear Algebra Appl. 117, 127–132 (1989)

    Article  MathSciNet  Google Scholar 

  70. Weyrauch, M., Scholz, D.: Computing the Baker-Campbell-Hausdorff series and the Zassenhaus product. Comput. Phys. Commun. 180, 1558–1565 (2009)

    Article  MathSciNet  Google Scholar 

  71. Wilcox, R.M.: Exponential operators and parameter differentiation in quantum physics. J. Math. Phys. 8, 962–982 (1967)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank the three referees for their insightful remarks that have helped him to improve the paper. This work has been partially supported by Ministerio de Economía y Competitividad (Spain) through the coordinated project MTM2013-46553-C3 (co-funded by FEDER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Casas .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 5.4 Lie Algebras

A Lie algebra is a vector space \(\mathfrak {g}\) together with a map \([\cdot , \cdot ]\) from \(\mathfrak {g} \times \mathfrak {g}\) into \(\mathfrak {g}\) called Lie bracket, with the following properties:

  1. 1.

    \([\cdot , \cdot ]\) is bilinear.

  2. 2.

    \([X, Y] = -[Y,X]\) for all \(X, Y \in \mathfrak {g}\).

  3. 3.

    \([X,[Y,Z]] + [Y,[Z,X]] + [Z,[X,Y]] = 0\) for all \(X, Y, Z \in \mathfrak {g}\).

Condition 2 is called skew symmetry and Condition 3 is the Jacobi identity. One should remark that \(\mathfrak {g}\) can be any vector space and that the Lie bracket operation \([\cdot , \cdot ]\) can be any bilinear, skew-symmetric map that satisfies the Jacobi identity. Thus, in particular, the space of all \(n \times n\) (real or complex) matrices is a Lie algebra with the Lie bracket defined as the commutator \([A,B] = A B - B A\).

Associated with any \(X \in \mathfrak {g}\) we can define a linear map \(\mathrm {ad}_X: \mathfrak {g} \longrightarrow \mathfrak {g}\) which acts according to

$$\begin{aligned} \mathrm{ad}_{X}Y=[X,Y], \qquad \mathrm{ad}_{X}^j Y = [X, \mathrm{ad}_{X}^{j-1} Y], \qquad \mathrm{ad}_{X}^0 Y=Y, \qquad j \in \mathbb {N} \end{aligned}$$
(90)

for all \(Y\in \mathfrak {g}\). The “ad” operator allows one to express nested Lie brackets in an easy way. Thus, for instance, [X, [X, [XY]]] can be written as \(\mathrm{ad}_X^3 Y\). Moreover, as a consequence of the Jacobi identity, one has the following properties:

  1. 1.

    \(\mathrm{ad}_{[X,Y]} = \mathrm{ad}_X \mathrm{ad}_Y - \mathrm{ad}_Y \mathrm{ad}_X = [\mathrm{ad}_X, \mathrm{ad}_Y]\)

  2. 2.

    \(\mathrm{ad}_Z [X,Y] = [X, \mathrm{ad}_Z Y] + [\mathrm{ad}_Z X, Y]\).

For matrix Lie algebras one has the important relation (see e.g. [36])

$$ \mathrm{e}^X \, Y \ \mathrm{e}^{-X} = \mathrm{e}^{\mathrm{ad}_X} Y = \sum _{k=0}^{\infty } \frac{1}{k!} \mathrm{ad}_X^k Y, $$

so that

$$ \mathrm{e}^X \, \mathrm{e}^Y \, \mathrm{e}^{-X} = \mathrm{e}^Z, \qquad \text {with} \qquad Z = \mathrm{e}^{\mathrm{ad}_X} Y. $$

The derivative of the matrix exponential map also plays an important role in our treatment. Given a matrix \(\varOmega (t)\), then [36]

$$\begin{aligned} \begin{aligned}&\frac{d }{dt} \exp (\varOmega (t)) = d \exp _{\varOmega (t)}(\varOmega '(t)) \ \exp (\varOmega (t)), \\&\frac{d }{dt} \exp (\varOmega (t)) = \exp (\varOmega (t)) \, d \exp _{-\varOmega (t)}(\varOmega '(t)), \end{aligned} \end{aligned}$$

where \(d \exp _{\varOmega }(C)\) is defined by the (everywhere convergent) power series

$$ d \exp _{\varOmega }(C) = \sum _{k=0}^{\infty } \frac{1}{(k+1)!} \mathrm{ad}_{\varOmega }^k (C) \equiv \frac{\mathrm{e}^{\mathrm{ad}_{\varOmega }}-I}{\mathrm{ad}_{\varOmega }}(C). $$

If the eigenvalues of the linear operator \(\mathrm{ad}_{\varOmega }\) are different from \(2 m \pi i\) with \(m \in \{\pm 1, \pm 2, \ldots \}\) then the operator \(d \exp _{\varOmega }\) is invertible [11, 36] and

$$ d \exp _{\varOmega }^{-1}(C) = \frac{\mathrm{ad}_{\varOmega }}{\mathrm{e}^{\mathrm{ad}_{\varOmega }}-I}(C) = \sum _{k=0}^{\infty } \frac{B_k}{k!} \mathrm{ad}_{\varOmega }^k (C), $$

where \(B_k\) are the Bernoulli numbers.

1.2 5.5 Free Lie Algebras and Hall–Viennot Bases

Very often it is necessary to carry out computations in a Lie algebra when no particular algebraic structure is assumed beyond what is common to all Lie algebras. It is in this context, in particular, where the notion of free Lie algebra plays a fundamental role. Given an arbitrary index set I (either finite or countably infinite), we can say that a Lie algebra \(\mathfrak {g}\) is free over the set I if [49]

  1. 1.

    for every \(i \in I\) there corresponds an element \(X_i \in \mathfrak {g}\);

  2. 2.

    for any Lie algebra \(\mathfrak {h}\) and any function \(i \mapsto Y_i \in \mathfrak {h}\), there exists a unique Lie algebra homomorphism \(\pi : \mathfrak {g} \rightarrow \mathfrak {h}\) satisfying \(\pi (X_i) = Y_i\) for all \(i \in I\).

If \(\mathscr {T} = \{ X_i : i \in I \} \subset \mathfrak {g}\), then the algebra \(\mathfrak {g}\) can be viewed as the set of all Lie brackets of \(X_i\). In this sense, we can say that \(\mathfrak {g}\) is the free Lie algebra generated by \(\mathscr {T}\) and we denote \(\mathfrak {g} = \mathscr {L}(X_1,X_2,\ldots )\). Elements of \(\mathscr {L}(X_1,X_2,\ldots )\) are called Lie polynomials.

It is important to remark that \(\mathfrak {g}\) is a universal object, and that computations in \(\mathfrak {g}\) can be applied in any particular Lie algebra \(\mathfrak {h}\) via the homomorphism \(\pi \) [49], just by replacing each abstract element \(X_i\) with the corresponding \(Y_i\).

In practical calculations, it is useful to represent a free Lie algebra by means of a basis (in the vector space sense). There are several systematic procedures to construct such a basis. Here, for simplicity, we will consider the free Lie algebra generated by just two elements \(\mathscr {T} = \{X,Y\}\), and the so-called Hall–Viennot bases. A set \(\{E_i \, : \, i=1,2,3,\ldots \} \subset \mathscr {L}(X,Y)\) whose elements are of the form

$$\begin{aligned} E_1=X, \quad E_2=Y, \quad \text {and} \quad E_i = [E_{i'},E_{i''}] \quad i\ge 3, \end{aligned}$$
(91)

with some positive integers \(i', i''<i\) (\(i=3,4,\ldots \)) is a Hall–Viennot basis if there exists a total order relation \(\succ \) in the set of indices \(\{1,2,3,\ldots \}\) such that \(i\succ i''\) for all \(i\ge 3\), and the map

$$\begin{aligned} d:\{3,4,\ldots \}\longrightarrow & {} \{(j,k) \in \mathbb {Z} \times \mathbb {Z} \ : \ j\succ k \succeq j''\}, \quad \end{aligned}$$
(92)
$$\begin{aligned} d(i)=(i',i'')&\end{aligned}$$
(93)

(with the convention \(1''=2''=0\)) is bijective.

In [57, 67], Hall–Viennot bases are indexed by a subset of words (a Hall set of words) on the alphabet \(\{x,y\}\). Such Hall set of words \(\{w_i\ : \ i\ge 1\}\) can be obtained by defining recursively \(w_i\) as the concatenation \(w_{i'}w_{i''}\) of the words \(w_{i'}\) and \(w_{i''}\), with \(w_1=x\) and \(w_2=y\). In particular, if the map (92) is constructed in such a way that the total order relation \(\succ \) is the natural order relation in \(\mathbb {Z}\), i.e., >, then the first elements of the Hall set of words \(w_i\) associated to the indices \(i=1,2,\dots ,14\) are x, y, yx, yxx, yxy, yxxx, yxxy, yxyy, yxxxx, yxxxy, yxxyy, yxyyy, yxxyx, yxyyx. In consequence, the corresponding elements of the basis in \(\mathscr {L}(X,Y)\) are

$$\begin{aligned} \begin{aligned}&X, \; Y, \; [Y,X], \; [[Y,X],X], \; [[Y,X],Y], \; [[[Y,X],X],X], \; [[[Y,X],X],Y], \; [[[Y,X],Y],Y], \\&\; [[[[Y,X],X],X],X], \; [[[[Y,X],X],X],Y], \; [[[[Y,X],X],Y],Y], \; [[[[Y,X],Y],Y],Y], \\&\; [[[Y,X],X],[Y,X]], \; [[[Y,X],Y],[Y,X]]. \end{aligned} \end{aligned}$$
(94)

Notice that if the total order is chosen as < instead, it results in the classical Hall basis as presented in [15].

On the other hand, the Lyndon basis can be constructed as a Hall–Viennot basis by considering the order relation \(\succ \) as follows: \(i \succ j\) if, in lexicographical order (i.e., the order used when ordering words in the dictionary), the Hall word \(w_i\) associated to i comes before than the Hall word \(w_j\) associated to j. The Hall set of words \(\{w_i\ : \ i\ge 1\}\) corresponding to the Lyndon basis is the set of Lyndon words, which can be defined as the set of words w on the alphabet \(\{x,y\}\) satisfying that, for arbitrary decompositions of w as the concatenation \(w=u v\) of two non-empty words u and v, the word w is smaller than v in lexicographical order [42, 67]. The Lyndon words for \(i=1,2,\dots ,14\) are x, y, xy, xyy, xxy, xyyy, xxyy, xxxy, xyyyy, xxyxy, xyxyy, xxyyy, xxxyy, xxxxy and the corresponding (Lyndon) basis in \(\mathscr {L}(X,Y)\) is formed by

$$\begin{aligned} \begin{aligned}&X, \; Y, \; [X,Y], \; [[X,Y],Y], \; [X,[X,Y]], \; [[[X,Y],Y],Y], \; [X,[[X,Y],Y]], \; [X,[X,[X,Y]]], \\&\; [[[[X,Y],Y],Y],Y], \; [[X,[X,Y]],[X,Y]], \; [[X,Y],[[X,Y],Y]], \; [X,[[[X,Y],Y],Y]], \\&\; [X,[X,[[X,Y],Y]]], \; [X,[X,[X,[X,Y]]]]. \end{aligned} \end{aligned}$$
(95)

It is possible to compute the dimension \(c_n\) of the linear subspace in the free Lie algebra generated by all the independent Lie brackets of order n, denoted by \(\mathscr {L}_n(X,Y)\). This number is provided by the so-called Witt’s formula [15, 45]:

$$\begin{aligned} c_n = \frac{1}{n} \sum _{d|n} \mu (d) 2^{n/d}, \end{aligned}$$
(96)

where the sum is over all (positive) divisors d of the degree n and \(\mu (d)\) is the Möbius function , defined by the rule \(\mu (1) = 1\), \(\mu (d) = (-1)^k\) if d is the product of k distinct prime factors and \(\mu (d) = 0\) otherwise [45]. For \(n \le 12\) one has explicitly

n

1

2

3

4

5

6

7

8

9

10

11

12

\(c_n\)

1

1

2

3

6

9

18

30

56

99

186

335

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Casas, F. (2018). Computational Aspects of Some Exponential Identities. In: Ebrahimi-Fard, K., Barbero Liñán, M. (eds) Discrete Mechanics, Geometric Integration and Lie–Butcher Series. Springer Proceedings in Mathematics & Statistics, vol 267. Springer, Cham. https://doi.org/10.1007/978-3-030-01397-4_6

Download citation

Publish with us

Policies and ethics