Skip to main content

Why Geometric Numerical Integration?

  • Conference paper
  • First Online:
Book cover Discrete Mechanics, Geometric Integration and Lie–Butcher Series

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 267))

Abstract

Geometric numerical integration (GNI) is a relatively recent discipline, concerned with the computation of differential equations while retaining their geometric and structural features exactly. In this paper we review the rationale for GNI and review a broad range of its themes: from symplectic integration to Lie-group methods, conservation of volume and preservation of energy and first integrals. We expand further on four recent activities in GNI: highly oscillatory Hamiltonian systems, W. Kahan’s ‘unconventional’ method, applications of GNI to celestial mechanics and the solution of dispersive equations of quantum mechanics by symmetric Zassenhaus splittings. This brief survey concludes with three themes in which GNI joined forces with other disciplines to shed light on the mathematical universe: abstract algebraic approaches to numerical methods for differential equations, highly oscillatory quadrature and preservation of structure in linear algebra computations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Occasionally known in the PDE literature as alternate direction methods.

  2. 2.

    Or, for that matter, a PDE, except that formalities are somewhat more complicated.

  3. 3.

    For traditional concepts such as Butcher tableaux, Runge-Kutta methods and B-series, the reader is referred to [34].

  4. 4.

    Note that in general \(S(\varvec{x})\) need not satisfy the so-called Jacobi identity.

  5. 5.

    A very readable early review of integrators for solar system dynamics is [63], cf also [62].

  6. 6.

    Also called equivariant.

  7. 7.

    To connect this to the GNI narrative, such a pattern is displayed by matrices in the symplectic Lie algebra \(\mathfrak {sp}(2n)\).

References

  1. Bader, P., Iserles, A., Kropielnicka, K., Singh, P.: Effective approximation for the semiclassical Schrödinger equation. Found. Comput. Math. 14(4), 689–720 (2014)

    Article  MathSciNet  Google Scholar 

  2. Bader, P., Iserles, A., Kropielnicka, K., Singh, P.: Efficient methods for linear Schrödinger equation in the semiclassical regime with time-dependent potential. Proc. R. Soc. A 472(2193), 20150733 (2016)

    Article  Google Scholar 

  3. Benner, P., Fassbender, H., Stoll, M.: Solving large-scale quadratic eigenvalue problems with Hamiltonian eigenstructure using a structure-preserving Krylov subspace method. Electron. Trans. Numer. Anal. 29, 212–229 (2007/08)

    Google Scholar 

  4. Blanes, S., Casas, F., Murua, A.: Splitting and composition methods in the numerical integration of differential equations. Bol. Soc. Esp. Mat. Apl. 45, 89–145 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Blanes, S., Casas, F., Farrés, A., Laskar, J., Makazaga, J., Murua, A.: New families of symplectic splitting methods for numerical integration in dynamical astronomy. Appl. Numer. Math. 68, 58–72 (2013)

    Article  MathSciNet  Google Scholar 

  6. Blanes, S., Casas, F., Oteo, J.A., Ros, J.: The Magnus expansion and some of its applications. Phys. Rep. 470(5–6), 151–238 (2009)

    Article  MathSciNet  Google Scholar 

  7. Butcher, J.C.: Coefficients for the study of Runge-Kutta integration processes. J. Austral. Math. Soc. 3, 185–201 (1963)

    Article  MathSciNet  Google Scholar 

  8. Celledoni, E., Iserles, A.: Methods for the approximation of the matrix exponential in a Lie-algebraic setting. IMA J. Numer. Anal. 21(2), 463–488 (2001)

    Article  MathSciNet  Google Scholar 

  9. Celledoni, E., Grimm, V., McLachlan, R.I., McLaren, D.I., O’Neale, D., Owren, B., Quispel, G.R.W.: Preserving energy resp. dissipation in numerical PDEs using the “average vector field” method. J. Comput. Phys. 231(20), 6770–6789 (2012)

    Article  MathSciNet  Google Scholar 

  10. Celledoni, E., McLachlan, R.I., McLaren, D.I., Owren, B., Quispel, G.R.W.: Integrability properties of Kahan’s method. J. Phys. A 47(36), 365202, 20 (2014)

    Article  MathSciNet  Google Scholar 

  11. Celledoni, E., McLachlan, R.I., McLaren, D.I., Owren, B., Quispel, G.R.W.: Discretization of polynomial vector fields by polarization. Proc. R. Soc. A 471, 20150390 (2015)

    Article  MathSciNet  Google Scholar 

  12. Celledoni, E., McLachlan, R.I., Owren, B., Quispel, G.R.W.: Geometric properties of Kahan’s method. J. Phys. A 46(2), 025201, 12 (2013)

    Article  MathSciNet  Google Scholar 

  13. Chartier, P., Murua, A.: Preserving first integrals and volume forms of additively split systems. IMA J. Numer. Anal. 27(2), 381–405 (2007)

    Article  MathSciNet  Google Scholar 

  14. Cohen, D., Gauckler, L., Hairer, E., Lubich, C.: Long-term analysis of numerical integrators for oscillatory Hamiltonian systems under minimal non-resonance conditions. BIT 55(3), 705–732 (2015)

    Article  MathSciNet  Google Scholar 

  15. Connes, A., Kreimer, D.: Lessons from quantum field theory: Hopf algebras and spacetime geometries. Lett. Math. Phys. 48(1), 85–96 (1999)

    Article  MathSciNet  Google Scholar 

  16. Deaño, A., Huybrechs, D., Iserles, A.: Computing Highly Oscillatory Integrals, SIAM (2018)

    Google Scholar 

  17. Duncan, M., Levison, H.F., Lee, M.H.: A multiple time step symplectic algorithm for integrating close encounters. Astron. J. 116, 2067–2077 (1998)

    Article  Google Scholar 

  18. Ebrahimi-Fard, K., Manchon, D.: A Magnus- and Fer-type formula in dendriform algebras. Found. Comput. Math. 9(3), 295–316 (2009)

    Article  MathSciNet  Google Scholar 

  19. Farrés, A., Laskar, J., Blanes, S., Casas, F., Makazaga, J., Murua, A.: High precision symplectic integrators for the Solar System. Celest. Mech. Dyn. Astron. 116(2), 141–174 (2013)

    Article  MathSciNet  Google Scholar 

  20. Feng, K., Shang, Z.J.: Volume-preserving algorithms for source-free dynamical systems. Numer. Math. 71(4), 451–463 (1995)

    Article  MathSciNet  Google Scholar 

  21. Feng, K., Wu, H.M., Qin, M.Z., Wang, D.L.: Construction of canonical difference schemes for Hamiltonian formalism via generating functions. J. Comput. Math. 7(1), 71–96 (1989)

    MathSciNet  MATH  Google Scholar 

  22. Fer, F.: Résolution de l’équation matricielle \(dU/dt=pU\) par produit infini d’exponentielles matricielles. Acad. Roy. Belg. Bull. Cl. Sci. 5(44), 818–829 (1958)

    MathSciNet  MATH  Google Scholar 

  23. Forest, É.: Geometric integration for particle accelerators. J. Phys. A 39(19), 5321–5377 (2006)

    Article  MathSciNet  Google Scholar 

  24. Gauckler, L., Hairer, E., Lubich, C.: Energy separation in oscillatory Hamiltonian systems without any non-resonance condition. Commun. Math. Phys. 321(3), 803–815 (2013)

    Article  MathSciNet  Google Scholar 

  25. Ge, Z., Marsden, J.E.: Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators. Phys. Lett. A 133(3), 134–139 (1988)

    Article  MathSciNet  Google Scholar 

  26. Grimm, V., McLachlan, R.I., McLaren, D.I., Quispel, G.R.W., Schönlieb, C.-B.: Discrete gradient methods for solving variational image regularization models. J. Phys. A 50, 295201 (2017)

    Article  MathSciNet  Google Scholar 

  27. Hairer, E.: Energy-preserving variant of collocation methods. JNAIAM. J. Numer. Anal. Ind. Appl. Math. 5(1–2), 73–84 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Hairer, E.: Challenges in geometric numerical integration. In: Trends in Contemporary Mathematics, pp. 125–135. Springer (2014)

    Google Scholar 

  29. Hairer, E., Lubich, C.: Long-time energy conservation of numerical methods for oscillatory differential equations. SIAM J. Numer. Anal. 38(2), 414–441 (electronic) (2000)

    Article  MathSciNet  Google Scholar 

  30. Hairer, E., Lubich, C.: Oscillations over long times in numerical Hamiltonian systems. In: Highly oscillatory problems, Vol. 366 of London Mathematical Society Lecture Note Series, pp. 1–24. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  31. Hairer, E., Lubich, C.: Long-term analysis of the Störmer-Verlet method for Hamiltonian systems with a solution-dependent frequency. Numerische Mathematik 134(1), 119–138 (2016)

    Article  MathSciNet  Google Scholar 

  32. Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration illustrated by the Störmer-Verlet method. Acta Numer. 12, 399–450 (2003)

    Article  MathSciNet  Google Scholar 

  33. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration, Vol. 31 of Springer Series in Computational Mathematics, 2nd edn. Springer, Berlin (2006)

    Google Scholar 

  34. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations. I, Vol. 8 of Springer Series in Computational Mathematics, 2nd edn. Springer, Berlin (1993)

    Google Scholar 

  35. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010)

    Article  MathSciNet  Google Scholar 

  36. Huybrechs, D., Vandewalle, S.: On the evaluation of highly oscillatory integrals by analytic continuation. SIAM J. Numer. Anal. 44(3), 1026–1048 (2006)

    Article  MathSciNet  Google Scholar 

  37. Iavernaro, F., Trigiante, D.: High-order symmetric schemes for the energy conservation of polynomial Hamiltonian problems. JNAIAM J. Numer. Anal. Ind. Appl. Math. 4(1–2), 87–101 (2009)

    Google Scholar 

  38. Iserles, A.: Solving linear ordinary differential equations by exponentials of iterated commutators. Numer. Math. 45(2), 183–199 (1984)

    Article  MathSciNet  Google Scholar 

  39. Iserles, A.: On the global error of discretization methods for highly-oscillatory ordinary differential equations. BIT 42(3), 561–599 (2002)

    Article  MathSciNet  Google Scholar 

  40. Iserles, A., Nørsett, S.P.: On the solution of linear differential equations in Lie groups. R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 357(1754), 983–1019 (1999)

    Google Scholar 

  41. Iserles, A., Nørsett, S.P.: Efficient quadrature of highly oscillatory integrals using derivatives. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461(2057), 1383–1399 (2005)

    Article  MathSciNet  Google Scholar 

  42. Iserles, A., Munthe-Kaas, H.Z., Nørsett, S.P., Zanna, A.: Lie-group methods. Acta Numer. 9, 215–365 (2000)

    Article  MathSciNet  Google Scholar 

  43. Iserles, A., Quispel, G.R.W., Tse, P.S.P.: B-series methods cannot be volume-preserving. BIT 47(2), 351–378 (2007)

    Article  MathSciNet  Google Scholar 

  44. Kahan, W.: Unconventional methods for trajectory calculations. Department of Mathematics, University of California at Berkeley (1993)

    Google Scholar 

  45. Kahan, W., Li, R.-C.: Unconventional schemes for a class of ordinary differential equations-with applications to the Korteweg-de Vries equation. J. Comput. Phys. 134(2), 316–331 (1997)

    Article  MathSciNet  Google Scholar 

  46. Lasagni, F.M.: Canonical Runge-Kutta methods. Z. Angew. Math. Phys. 39(6), 952–953 (1988)

    Article  MathSciNet  Google Scholar 

  47. Laskar, J.: Chaos in the solar system. Ann. Henri Poincaré 4(suppl. 2), S693–S705 (2003)

    Article  MathSciNet  Google Scholar 

  48. Laskar, J., Fienga, A., Gastineau, M., Manche, H.: La2010: a new orbital solution for the long-term motion of the Earth. Astron. Astrophys. 532, A89 (2011)

    Article  Google Scholar 

  49. Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics, Vol. 14 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  50. Levin, D.: Procedures for computing one- and two-dimensional integrals of functions with rapid irregular oscillations. Math. Comput. 38(158), 531–538 (1982)

    Article  MathSciNet  Google Scholar 

  51. Lord, G., Malham, S.J.A., Wiese, A.: Efficient strong integrators for linear stochastic systems. SIAM J. Numer. Anal. 46(6), 2892–2919 (2008)

    Article  MathSciNet  Google Scholar 

  52. Mackey, D.S., Mackey, N., Tisseur, F.: Structured factorizations in scalar product spaces. SIAM J. Matrix Anal. Appl. 27(3), 821–850 (2005)

    Article  MathSciNet  Google Scholar 

  53. Magnus, W.: On the exponential solution of differential equations for a linear operator. Commun. Pure Appl. Math. 7, 649–673 (1954)

    Article  MathSciNet  Google Scholar 

  54. Marsden, J.E., West, M.: Discrete mechanics and variational integrators. Acta Numer. 10, 357–514 (2001)

    Article  MathSciNet  Google Scholar 

  55. McLachlan, R.: Comment on: Poisson schemes for Hamiltonian systems on Poisson manifolds [Comput. Math. Appl. 27 (1994), no. 12, 7–16; MR1284126 (95d:65069)] by W.J. Zhu and M.Z. Qin, Comput. Math. Appl. 29(3), 1 (1995)

    Google Scholar 

  56. McLachlan, R.I.: Composition methods in the presence of small parameters. BIT 35(2), 258–268 (1995)

    Article  MathSciNet  Google Scholar 

  57. McLachlan, R.I., Quispel, G.R.W.: Splitting methods. Acta Numer. 11, 341–434 (2002)

    Article  MathSciNet  Google Scholar 

  58. McLachlan, R.I., Modin, K., Munthe-Kaas, H., Verdier, O.: B-series are exactly the affine equivariant methods. Numerische Mathematik 133(3), 599–622 (2016)

    Article  MathSciNet  Google Scholar 

  59. McLachlan, R.I., Quispel, G.R.W., Robidoux, N.: Geometric integration using discrete gradients. R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 357(1754), 1021–1045 (1999)

    Article  MathSciNet  Google Scholar 

  60. McLachlan, R.I., Quispel, G.R.W., Turner, G.S.: Numerical integrators that preserve symmetries and reversing symmetries. SIAM J. Numer. Anal. 35(2), 586–599 (1998)

    Article  MathSciNet  Google Scholar 

  61. Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45(1), 3–49 (electronic) (2003)

    Article  MathSciNet  Google Scholar 

  62. Morbidelli, A.: Modern Celestial Mechanics. Gordon & Breach, London (2002a)

    Google Scholar 

  63. Morbidelli, A.: Modern integrations of solar system dynamics. Annu. Rev. Earth Planet. Sci. 30, 89–112 (2002b)

    Article  Google Scholar 

  64. Moser, J., Veselov, A.P.: Discrete versions of some classical integrable systems and factorization of matrix polynomials. Commun. Math. Phys. 139(2), 217–243 (1991)

    Article  MathSciNet  Google Scholar 

  65. Munthe-Kaas, H.: Runge-Kutta methods on Lie groups. BIT 38(1), 92–111 (1998)

    Article  MathSciNet  Google Scholar 

  66. Munthe-Kaas, H., Verdier, O.: Aromatic Butcher series. Found. Comput. Math. 16, 183–215 (2016)

    Article  MathSciNet  Google Scholar 

  67. Munthe-Kaas, H.Z., Quispel, G.R.W., Zanna, A.: Generalized polar decompositions on Lie groups with involutive automorphisms. Found. Comput. Math. 1(3), 297–324 (2001)

    Article  MathSciNet  Google Scholar 

  68. Murua, A., Sanz-Serna, J.M.: Word series for dynamical systems and their numerical integrators, Technical report, Universidad Carlos III de Madrid (2015). arXiv:1502.05528v2 [math.NA]

    Article  MathSciNet  Google Scholar 

  69. Murua, A., Sanz-Serna, J.M.: Word series for dynamical systems and their numerical integrators. Foundations of Computational Mathematics 17(3), 675–712 (2017)

    Article  MathSciNet  Google Scholar 

  70. Neĭshtadt, A.I.: The separation of motions in systems with rapidly rotating phase. Prikl. Mat. Mekh. 48(2), 197–204 (1984)

    MathSciNet  Google Scholar 

  71. Olver, S.: On the quadrature of multivariate highly oscillatory integrals over non-polytope domains. Numer. Math. 103(4), 643–665 (2006)

    Article  MathSciNet  Google Scholar 

  72. Owren, B., Marthinsen, A.: Integration methods based on canonical coordinates of the second kind. Numer. Math. 87(4), 763–790 (2001)

    Article  MathSciNet  Google Scholar 

  73. Petrera, M., Pfadler, A., Suris, Y.B.: On integrability of Hirota-Kimura type discretizations. Regul. Chaotic Dyn. 16(3–4), 245–289 (2011)

    Article  MathSciNet  Google Scholar 

  74. Quispel, G.R.W.: Volume-preserving integrators. Phys. Lett. A 206(1–2), 26–30 (1995)

    Google Scholar 

  75. Quispel, G.R.W., McLaren, D.I.: A new class of energy-preserving numerical integration methods. J. Phys. A 41(4), 045206, 7 (2008)

    Article  MathSciNet  Google Scholar 

  76. Ramos, A.G.C.P., Iserles, A.: Numerical solution of Sturm-Liouville problems via Fer streamers. Numer. Math. 131(3), 541–565 (2015)

    Article  MathSciNet  Google Scholar 

  77. Sanz-Serna, J.M.: Runge-Kutta schemes for Hamiltonian systems. BIT 28(4), 877–883 (1988)

    Article  MathSciNet  Google Scholar 

  78. Sanz-Serna, J.M.: An unconventional symplectic integrator of W. Kahan. Appl. Numer. Math. 16(1–2), 245–250. A Festschrift to honor Professor Robert Vichnevetsky on his 65th birthday (1994)

    Article  MathSciNet  Google Scholar 

  79. Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian Problems, Vol. 7 of Applied Mathematics and Mathematical Computation. Chapman & Hall, London (1994)

    Google Scholar 

  80. Shang, Z.J.: Generating functions for volume-preserving mappings and Hamilton-Jacobi equations for source-free dynamical systems. Sci. China Ser. A 37(10), 1172–1188 (1994)

    MathSciNet  MATH  Google Scholar 

  81. Singh, P.: Algebraic theory for higher-order methods in computational quantum mechanics, Technical report, DAMTP, University of Cambridge (2015). arXiv:1510.06896v1 [math.NA]

  82. Skokos, S.K., Gottwald, G., Laskar, J.: Chaos, Detection and Predictability, Springer, p. 18 (2016)

    Google Scholar 

  83. Suris, Y.B.: Preservation of symplectic structure in the numerical solution of Hamiltonian systems. In: Numerical Solution of Ordinary Differential Equations (Russian), Akad. Nauk SSSR, Inst. Prikl. Mat., Moscow, pp. 148–160, 232, 238–239 (1988)

    Google Scholar 

  84. Sussman, G.J., Wisdom, J.: Chaotic evolution of the solar system. Science 257(5066), 56–62 (1992)

    Article  MathSciNet  Google Scholar 

  85. Suzuki, M.: Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations. Phys. Lett. A 146(6), 319–323 (1990)

    Article  MathSciNet  Google Scholar 

  86. van der Kamp, P.H., Kouloukas, T.E., Quispel, G.R.W., Tran, D.T., Vanhaecke, P.: Integrable and superintegrable systems associated with multi-sums of products. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 470(2172), 20140481, 23 (2014)

    Google Scholar 

  87. Wu, X., You, X., Wang, B.: Structure-Preserving Algorithms for Oscillatory Differential Equations. Springer, Heidelberg; Science Press Beijing, Beijing (2013)

    Book  Google Scholar 

  88. Yoshida, H.: Construction of higher order symplectic integrators. Phys. Lett. A 150(5–7), 262–268 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Australian Research Council. The authors are grateful to David McLaren for assistance during the preparation of this paper, as well as to Philipp Bader, Robert McLachlan and Marcus Webb, whose comments helped to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arieh Iserles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Iserles, A., Quispel, G.R.W. (2018). Why Geometric Numerical Integration?. In: Ebrahimi-Fard, K., Barbero Liñán, M. (eds) Discrete Mechanics, Geometric Integration and Lie–Butcher Series. Springer Proceedings in Mathematics & Statistics, vol 267. Springer, Cham. https://doi.org/10.1007/978-3-030-01397-4_1

Download citation

Publish with us

Policies and ethics