Skip to main content

Just 5 Questions: Toward a Design Framework for Immersive Analytics

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11190))

Abstract

We present an initial design framework for immersive analytics based on Brehmer and Munzner’s “What-Why-How” data visualisation framework. We extend their framework to take into account Who are the people or teams of people who are going to use the system, and Where is the system to be used and what are the available devices and technology. In addition, the How component is extended to cater for collaboration, multisensory presentation, interaction with an underlying computational model, degree of fidelity and organisation of the workspace around the user. By doing so we provide a framework for understanding immersive analytics research and applications as well as clarifying how immersive analytics differs from traditional data visualisation and visual analytics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amar, R., Eagan, J., Stasko, J.: Low-level components of analytic activity in information visualization. In: IEEE Symposium on Information Visualization, INFOVIS 2005, pp. 111–117. IEEE (2005)

    Google Scholar 

  2. Andrienko, N., Andrienko, G.: Exploratory Analysis of Spatial and Temporal Data a Systematic Approach. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-31190-4

    Book  MATH  Google Scholar 

  3. Bertin, J.: Semiology of Graphics: Diagrams, Networks, Maps. University of Wisconsin Press, Madison (1983)

    Google Scholar 

  4. Brehmer, M., Munzner, T.: A multi-level typology of abstract visualization tasks. IEEE Trans. Vis. Comput. Graph. 19(12), 2376–2385 (2013)

    Article  Google Scholar 

  5. Butscher, S., Hubenschmid, S., Müller, J., Fuchs, J., Reiterer, H.: Clusters, trends, and outliers: how immersive technologies can facilitate the collaborative analysis of multidimensional data. In: Proceedings SIGCHI Conference on Human Factors in Computing Systems, pp. 90:1–90:12 (2018)

    Google Scholar 

  6. Card, S.K., Mackinlay, J.: The structure of the information visualization design space. In: Proceedings of the IEEE Symposium on Information Visualization, pp. 92–99. IEEE (1997)

    Google Scholar 

  7. Card, S.K., Mackinlay, J.D., Shneiderman, B.: Readings in Information Visualization: Using Vision to Think. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  8. Chen, J., Pyla, P.S., Bowman, D.A.: Testbed evaluation of navigation and text display techniques in an information-rich virtual environment. In: Proceeedings of IEEE Virtual Reality, pp. 181–289. IEEE (2004). https://doi.org/10.1109/VR.2004.1310072

  9. Collins, C., Carpendale, S.: VisLink: revealing relationships amongst visualizations. IEEE Trans. Vis. Comput. Graph. 13(6), 1192–1199 (2007)

    Article  Google Scholar 

  10. Cordeil, M., Cunningham, A., Dwyer, T., Thomas, B.H., Marriott, K.: ImAxes: immersive axes as embodied affordances for interactive multivariate data visualisation. In: Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology, pp. 71–83. ACM (2017)

    Google Scholar 

  11. Dinh, H.Q., Walker, N., Hodges, L.F., Song, C., Kobayashi, A.: Evaluating the importance of multi-sensory input on memory and the sense of presence in virtual environments. In: Proceedings IEEE Virtual Reality, pp. 222–228 (1999)

    Google Scholar 

  12. Dourish, P.: Where the Action Is: The Foundations of Embodied Interaction. MIT Press, Cambridge (2001)

    Google Scholar 

  13. Elmqvist, N., Vande Moere, A., Jetter, H.C., Cernea, D., Reiterer, H., Jankun-Kelly, T.J.: Fluid interaction for information visualization. Inf. Vis. 10(4), 327–340 (2011). https://doi.org/10.1177/1473871611413180

    Article  Google Scholar 

  14. ElSayed, N.A., Smith, R.T., Marriott, K., Thomas, B.H.: Context-aware design pattern for situated analytics: blended model view controller. J. Vis. Lang. Comput. 44 (2018)

    Article  Google Scholar 

  15. Ens, B., Hincapié-Ramos, J.D., Irani, P.: Ethereal planes: a design framework for 2D information space in 3D mixed reality environments. In: Proceedings of the 2nd ACM Symposium on Spatial User Interaction, pp. 2–12. ACM (2014)

    Google Scholar 

  16. Feiner, S., MacIntyre, B., Haupt, M., Solomon, E.: Windows on the world: 2D windows for 3D augmented reality. In: Proceedings of the 6th Annual ACM Symposium on User Interface Software and Technology, pp. 145–155. ACM (1993)

    Google Scholar 

  17. Heer, J., Shneiderman, B.: Interactive dynamics for visual analysis. Queue 10(2), 30 (2012)

    Article  Google Scholar 

  18. Hoffman, H.G.: Physically touching virtual objects using tactile augmentation enhances the realism of virtual environments. In: IEEE 1998 Virtual Reality Annual International Symposium Proceedings, pp. 59–63 (1998)

    Google Scholar 

  19. Hoffman, H.G., Hollander, A., Schroder, K., Rousseau, S., Furness, T.: Physically touching and tasting virtual objects enhances the realism of virtual experiences. Virtual Real. 3(4), 226–234 (1998)

    Article  Google Scholar 

  20. Jansen, Y., Dragicevic, P.: An interaction model for visualizations beyond the desktop. IEEE Trans. Vis. Comput. Graph. 19(12), 2396–2405 (2013)

    Article  Google Scholar 

  21. Jota, R., Nacenta, M.A., Jorge, J.A., Carpendale, S., Greenberg, S.: A comparison of ray pointing techniques for very large displays. In: Proceedings of Graphics Interface 2010. pp. 269–276. Canadian Information Processing Society (2010)

    Google Scholar 

  22. Keim, D., Kohlhammer, J., Ellis, G. (eds.): Mastering the Information Age: Solving Problems with Visual Analytics. Eurographics Association (2010)

    Google Scholar 

  23. Keller, P.R., Keller, M.M.: Visual Cues: Practical Data Visualization. IEEE Press (1993)

    Google Scholar 

  24. Kwon, O.H., Muelder, C., Lee, K., Ma, K.L.: A study of layout, rendering, and interaction methods for immersive graph visualization. IEEE Transactions on Visualization and Computer Graphics 22(7), 1802–1815 doi: 10.1109/TVCG.2016.2520921 (July 2016)

    Google Scholar 

  25. Kwon, O.H., Muelder, C., Lee, K., Ma, K.L.: Spherical layout and rendering methods for immersive graph visualization. In: 2015 IEEE Pacific Visualization Symposium (PacificVis). pp. 63–67 https://doi.org/10.1109PACIFICVIS.2015.7156357 (April 2015)

  26. LaViola Jr, J.J., Kruijff, E., McMahan, R.P., Bowman, D., Poupyrev, I.P.: 3D User Interfaces: Theory and Practice. Addison-Wesley Professional (2017)

    Google Scholar 

  27. Lee, B., Isenberg, P., Riche, N.H., Carpendale, S.: Beyond mouse and keyboard: Expanding design considerations for information visualization interactions. IEEE Transactions on Visualization and Computer Graphics 18(12), 2689–2698 (2012)

    Article  Google Scholar 

  28. Lee, B., Plaisant, C., Parr, C.S., Fekete, J.D., Henry, N.: Task taxonomy for graph visualization. In: Proceedings of the 2006 AVI Workshop on Beyond Time and Errors: Novel Evaluation Methods for Information Visualization. pp. 1–5. ACM (2006)

    Google Scholar 

  29. Li, G., Bragdon, A.C., Pan, Z., Zhang, M., Swartz, S.M., Laidlaw, D.H., Zhang, C., Liu, H., Chen, J.: VisBubbles: a workflow-driven framework for scientific data analysis of time-varying biological datasets. In: SIGGRAPH Asia 2011 Posters. p. 27. ACM (2011)

    Google Scholar 

  30. Liu, J., Dwyer, T., Marriott, K., Millar, J., Haworth, A.: Understanding the relationship between interactive optimisation and visual analytics in the context of prostate brachytherapy. IEEE Transactions on Visualization and Computer Graphics 24(1), 319–329 (2018)

    Article  Google Scholar 

  31. Mackinlay, J.: Automating the design of graphical presentations of relational information. ACM Transactions On Graphics (ToG) 5(2), 110–141 (1986)

    Article  Google Scholar 

  32. McDonnel, B., Elmqvist, N.: Towards utilizing GPUs in information visualization: A model and implementation of image-space operations. IEEE Transactions on Visualization and Computer Graphics 15(6), 1105–1112 http://doi.ieeecomputersociety.org/10.1109/TVCG.2009.191 (2009)

    Article  Google Scholar 

  33. Milgram, P., Takemura, H., Utsumi, A., Kishino, F.: Augmented reality: a class of displays on the reality-virtuality continuum. Proc. SPIE 2351, 282–292 (1995)

    Article  Google Scholar 

  34. Munzner, T.: Visualization Analysis and Design. CRC Press, Boca Raton (2014)

    Book  Google Scholar 

  35. Nacenta, M.A., et al.: E-conic: a perspective-aware interface for multi-display environments. In: Proceedings of the 20th Annual ACM Symposium on User Interface Software and Technology, pp. 279–288. ACM (2007)

    Google Scholar 

  36. Patterson, R.E., Blaha, L.M., Grinstein, G.G., Liggett, K.K., Kaveney, D.E., Sheldon, K.C., Havig, P.R., Moore, J.A.: A human cognition framework for information visualization. Comput. Graph. 42, 42–58 (2014)

    Article  Google Scholar 

  37. Petford, J., Nacenta, M.A., Gutwin, C.: Pointing all around you: selection performance of mouse and ray-cast pointing in full-coverage displays. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, p. 533. ACM (2018)

    Google Scholar 

  38. Piringer, H., Kosara, R., Hauser, H.: Interactive focus+ context visualization with linked 2D/3D scatterplots. In: Proceedings of the Second International Conference on Coordinated and Multiple Views in Exploratory Visualization, pp. 49–60. IEEE (2004)

    Google Scholar 

  39. Pirolli, P., Card, S.: The sensemaking process and leverage points for analyst technology as identified through cognitive task analysis. In: Proceedings of International Conference on Intelligence Analysis (2005)

    Google Scholar 

  40. Ragan, E.D., Endert, A., Sanyal, J., Chen, J.: Characterizing provenance in visualization and data analysis an organizational framework of provenance types and purposes. IEEE Trans. Vis. Comput. Graph. 22(1), 31–40 (2016). https://doi.org/10.1109/TVCG.2015.2467551

    Article  Google Scholar 

  41. Ranasinghe, N., et al.: Season traveller: multisensory narration for enhancing the virtual reality experience. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI), pp. 577:1–577:13. ACM, New York (2018)

    Google Scholar 

  42. Sacha, D., Stoffel, A., Stoffel, F., Kwon, B.C., Ellis, G., Keim, D.A.: Knowledge generation model for visual analytics. IEEE Trans. Vis. Comput. Graph. 20(12), 1604–1613 (2014)

    Article  Google Scholar 

  43. Sanchez-Vives, M.V., Slater, M.: From presence to consciousness through virtual reality. Nat. Rev. Neurosci. 6(4), 332–339 (2005)

    Article  Google Scholar 

  44. Shneiderman, B.: The eyes have it: a task by data type taxonomy for information visualizations. In: Proceedings of the IEEE Symposium on Visual Languages, pp. 336–343. IEEE Press (1996)

    Google Scholar 

  45. Veas, E., Grasset, R., Ferencik, I., Grünewald, T., Schmalstieg, D.: Mobile augmented reality for environmental monitoring. Pers. Ubiquitous Comput. 17(7), 1515–1531 (2013)

    Article  Google Scholar 

  46. Wang, X.M., Zhang, T.Y., Ma, Y.X., Xia, J., Chen, W.: A survey of visual analytic pipelines. J. Comput. Sci. Technol. 31(4), 787–804 (2016)

    Article  Google Scholar 

  47. Ward, M.O., Grinstein, G., Keim, D.: Interactive Data Visualization: Foundations, Techniques, and Applications, 2nd edn. CRC Press, Boca Raton (2015)

    Book  Google Scholar 

  48. Ware, C.: Information Visualization: Perception for Design, 3rd edn. Elsevier, New York City (2013)

    Google Scholar 

  49. Wickham, H.: A layered grammar of graphics. J. Comput. Graph. Stat. 19(1), 3–28 (2010). https://doi.org/10.1198/jcgs.2009.07098

    Article  MathSciNet  Google Scholar 

  50. Wilkinson, L.: The Grammar of Graphics. Springer, New York (2006). https://doi.org/10.1007/0-387-28695-0

    Book  MATH  Google Scholar 

  51. Willett, W., Jansen, Y., Dragicevic, P.: Embedded data representations. IEEE Trans. Vis. Comput. Graph. 23(1), 461–470 (2017)

    Article  Google Scholar 

  52. Wright, H.: Introduction to Scientific Visualization. Springer, London (2007). https://doi.org/10.1007/978-1-84628-755-8

    Book  MATH  Google Scholar 

  53. Yi, J.S., ah Kang, Y., Stasko, J.: Toward a deeper understanding of the role of interaction in information visualization. IEEE Trans. Vis. Comput. Graph. 13(6), 1224–1231 (2007)

    Article  Google Scholar 

  54. Zhao, H., Bryant, G.W., Griffin, W., Terrill, J.E., Chen, J.: Validation of SplitVectors encoding for quantitative visualization of large-magnitude-range vector fields. IEEE Trans. Vis. Comput. Graph. 23(6), 1691–1705 (2017)

    Article  Google Scholar 

  55. Zhao, H., Chen, J.: Bivariate separable-dimension glyphs can improve visual analysis of holistic features. IEEE Trans. Vis. Comput. Graph. (2018, under revision). https://arxiv.org/abs/1712.02333

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim Marriott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marriott, K. et al. (2018). Just 5 Questions: Toward a Design Framework for Immersive Analytics. In: Marriott, K., et al. Immersive Analytics. Lecture Notes in Computer Science(), vol 11190. Springer, Cham. https://doi.org/10.1007/978-3-030-01388-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01388-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01387-5

  • Online ISBN: 978-3-030-01388-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics