Skip to main content

Situated Analytics

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11190))

Abstract

This chapter introduces the concept of situated analytics that employs data representations organized in relation to germane objects, places, and persons for the purpose of understanding, sensemaking, and decision-making. The components of situated analytics are characterized in greater detail, including the users, tasks, data, representations, interactions, and analytical processes involved. Several case studies of projects and products are presented that exemplify situated analytics in action. Based on these case studies, a set of derived design considerations for building situated analytics applications are presented. Finally, there is a an outline of a research agenda of challenges and research questions to explore in the future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aliakseyeu, D., Irani, P., Lucero, A., Subramanian, S.: Multi-flick: an evaluation of flick-based scrolling techniques for pen interfaces. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1689–1698. ACM (2008)

    Google Scholar 

  2. Atzori, L., Iera, A., Morabito, G.: The Internet of Things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)

    Article  Google Scholar 

  3. Badam, S.K., Elmqvist, N.: PolyChrome: a cross-device framework for collaborative web visualization. In: Proceedings of the ACM Conference on Interactive Tabletops and Surfaces, pp. 109–118. ACM (2014). http://dl.acm.org/citation.cfm?id=2669485

  4. Badam, S.K., Fisher, E.R., Elmqvist, N.: Munin: a peer-to-peer middleware for ubiquitous analytics and visualization spaces. IEEE Trans. Vis. Comput. Graph. 21(2), 215–228 (2015). https://doi.org/10.1109/TVCG.2014.2337337

    Article  Google Scholar 

  5. Beaudouin-Lafon, M.: Instrumental interaction: an interaction model for designing post-wimp user interfaces. In: Proceedings of the ACM Conference on Human Factors in Computing Systems, pp. 446–453. ACM (2000)

    Google Scholar 

  6. Beaudouin-Lafon, M., Mackay, W.E.: Research directions in situated computing. In: Extended Abstracts on Human Factors in Computing Systems. pp. 369–369. ACM (2000)

    Google Scholar 

  7. Bellotti, V., Back, M., Edwards, W.K., Grinter, R.E., Henderson, A., Lopes, C.: Making sense of sensing systems: Five questions for designers and researchers. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2002, pp. 415–422. ACM, New York (2002). http://doi.acm.org/10.1145/503376.503450

  8. Bezerianos, A., Isenberg, P.: Perception of visual variables on tiled wall-sized displays for information visualization applications. IEEE Trans. Vis. Comput. Graph. 18(12), 2516–2525 (2012)

    Article  Google Scholar 

  9. Billinghurst, M., Clark, A., Lee, G.: A survey of augmented reality. Found. Trends Hum. Comput. Interact. 8(2–3), 73–272 (2015)

    Article  Google Scholar 

  10. Billinghurst, M., Kato, H.: Collaborative augmented reality. Commun. ACM 45(7), 64–70 (2002)

    Article  Google Scholar 

  11. Bimber, O., Raskar, R.: Spatial Augmented Reality: Merging Real and Virtual Worlds. A. K. Peters Ltd., Natick (2005)

    Book  Google Scholar 

  12. Card, S.K., Mackinlay, J.D., Shneiderman, B.: Readings in Information Visualization: Using Vision to Think. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  13. Cauchard, J.R., et al.: Visual separation in mobile multi-display environments. In: Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, pp. 451–460. ACM (2011)

    Google Scholar 

  14. Chandler, T., et al.: Immersive analytics. In: Proceedings of the IEEE Symposium on Big Data Visual Analytics, pp. 73–80. IEEE (2015)

    Google Scholar 

  15. Chen, G., Kotz, D., et al.: A survey of context-aware mobile computing research. Technical report TR2000-381, Department of Computer Science, Dartmouth College (2000)

    Google Scholar 

  16. Chi, E.H.h., Riedl, J.T.: An operator interaction framework for visualization systems. In: Proceedings of the IEEE Symposium on Information Visualization, pp. 63–70. IEEE (1998)

    Google Scholar 

  17. Elmqvist, N., Irani, P.: Ubiquitous analytics: interacting with big data anywhere, anytime. IEEE Comput. 46(4), 86–89 (2013)

    Article  Google Scholar 

  18. Elsayed, N., Thomas, B., Marriott, K., Piantadosi, J., Smith, R.: Situated analytics. In: Proceedings of the IEEE Symposium on Big Data Visual Analytics, pp. 1–8. IEEE (2015)

    Google Scholar 

  19. Elsayed, N., Thomas, B., Smith, R., Marriott, K., Piantadosi, J.: Using augmented reality to support situated analytics. In: Proceedings of the IEEE Conference on Virtual Reality, pp. 175–176. IEEE (2015)

    Google Scholar 

  20. Elsayed, N.A.M., Smith, R.T., Marriott, K., Thomas, B.H.: Blended UI controls for situated analytics. In: Proceedings of the IEEE International Symposium on Big Data Visual Analytics, pp. 1–8. IEEE (2016)

    Google Scholar 

  21. Elsayed, N.A., Thomas, B.H., Marriott, K., Piantadosi, J., Smith, R.T.: Situated analytics: demonstrating immersive analytical tools with Augmented Reality. J. Vis. Lang. Comput. 36, 13–23 (2016)

    Article  Google Scholar 

  22. Ens, B.M., Finnegan, R., Irani, P.P.: The personal cockpit: a spatial interface for effective task switching on head-worn displays. In: Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems, pp. 3171–3180. ACM (2014)

    Google Scholar 

  23. Gruber, L., Richter-Trummer, T., Schmalstieg, D.: Real-time photometric registration from arbitrary geometry. In: Proceedings of the IEEE International Symposium on Mixed and Augmented Reality, pp. 119–128. IEEE (2012)

    Google Scholar 

  24. Hanrahan, P.: Self-illustrating phenomena. In: Visualization 2004, p. xix. IEEE (2004)

    Google Scholar 

  25. Huang, D., et al.: Personal visualization and personal visual analytics. IEEE Trans. Vis. Comput. Graph. 21(3), 420–433 (2015)

    Article  Google Scholar 

  26. Hull, R., Neaves, P., Bedford-Roberts, J.: Towards situated computing. In: Proceedings of the International Symposium on Wearable Computers, pp. 146–153. IEEE (1997)

    Google Scholar 

  27. Isenberg, P., Dragicevic, P., Willett, W., Bezerianos, A., Fekete, J.D.: Hybrid-image visualization for large viewing environments. IEEE Trans. Vis. Comput. Graph. 19(12), 2346–2355 (2013)

    Article  Google Scholar 

  28. Jansen, Y., Dragicevic, P.: An interaction model for visualizations beyond the desktop. IEEE Trans. Vis. Comput. Graph. 19(12), 2396–2405 (2013)

    Article  Google Scholar 

  29. Jansen, Y., et al.: Opportunities and challenges for data physicalization. In: Proceedings of the ACM Conference on Human Factors in Computing Systems, pp. 3227–3236. ACM (2015)

    Google Scholar 

  30. Jansen, Y., Hornbaek, K.: A psychophysical investigation of size as a physical variable. IEEE Trans. Vis. Comput. Graph. 22(1), 479–488 (2016). https://doi.org/10.1109/TVCG.2015.2467951

    Article  Google Scholar 

  31. Jordan, T.: Water flow visualization using electrolysis hydrogen bubbles (2013). https://youtu.be/memvL8NG8jc. Accessed 17 Nov 2016

  32. Kalkofen, D., Mendez, E., Schmalstieg, D.: Interactive focus and context visualization for augmented reality. In: Proceedings of the 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 1–10. IEEE Computer Society (2007)

    Google Scholar 

  33. Kalkofen, D., Sandor, C., White, S., Schmalstieg, D.: Visualization techniques for augmented reality. In: Furht, B. (ed.) Handbook of Augmented Reality, pp. 65–98. Springer, New York (2011). https://doi.org/10.1007/978-1-4614-0064-6_3

    Chapter  Google Scholar 

  34. Kalkofen, D., Tatzgern, M., Schmalstieg, D.: Explosion diagrams in augmented reality. In: Proceedings of the IEEE Virtual Reality Conference, pp. 71–78. IEEE (2009)

    Google Scholar 

  35. Kavanaugh, J.: How mixed reality and machine learning are driving innovation in farming, November 2016. https://techcrunch.com/2016/11/17/how-mixed-reality-and-machine-learning-are-driving-innovation-in-farming/

  36. Kruijff, E., Swan II, J.E., Feiner, S.: Perceptual issues in Augmented Reality revisited. In: Proceedings of the ACM/IEEE International Symposium on Mixed and Augmented Reality, vol. 9, pp. 3–12 (2010)

    Google Scholar 

  37. LaPointe, R.: How AI and AR apps can change agriculture, November 2016. https://softwaredevelopersindia.com/blog/ai-ar-apps-can-change-agriculture/

  38. Lee, B., Isenberg, P., Riche, N.H., Carpendale, S.: Beyond mouse and keyboard: expanding design considerations for information visualization interactions. IEEE Trans. Vis. Comput. Graph. 18(12), 2689–2698 (2012). https://doi.org/10.1109/TVCG.2012.204

    Article  Google Scholar 

  39. Lepetit, V., Berger, M.O.: An intuitive tool for outlining objects in video sequences: applications to augmented and diminished reality. In: Proceedings of the International Conference on Mixed Reality (2001)

    Google Scholar 

  40. Marner, M.R., Irlitti, A., Thomas, B.H.: Improving procedural task performance with augmented reality annotations. In: IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 39–48. IEEE (2013)

    Google Scholar 

  41. McGill, M., Boland, D., Murray-Smith, R., Brewster, S.: A dose of reality: overcoming usability challenges in VR head-mounted displays. In: Proceedings of the ACM Conference on Human Factors in Computing Systems, pp. 2143–2152. ACM (2015)

    Google Scholar 

  42. Milgram, P., Kishino, F.: A taxonomy of mixed reality visual displays. IEICE Trans. Inf. Syst. 77(12), 1321–1329 (1994)

    Google Scholar 

  43. Mojang: Minecraft, 19 December 2016. https://minecraft.net/en/

  44. Nguyen, M.: Augmented Reality: will 2016 be the year of smart contact lens? December 2016. https://www.wearable-technologies.com/2016/02/augmented-reality-will-2016-be-the-year-of-smart-contact-lens/

  45. Offenhuber, D., Bertini, E., Stefaner, M.: Indexical visualization with Dietmar Offenhuber - data stories podcast (2016). http://datastori.es/80-indexical-visualization-with-dietmar-offenhuber/

  46. Offenhuber, D., Telhan, O.: Indexical visualization - the data-less information display. In: Ubiquitous Computing, Complexity and Culture, p. 288 (2015)

    Google Scholar 

  47. O’Regan, J.K., Noë, A.: A sensorimotor account of vision and visual consciousness. Behav. Brain Sci. 24(05), 939–973 (2001)

    Article  Google Scholar 

  48. O’Regan, J.K.: What it is like to see: a sensorimotor theory of perceptual experience. Synthese 129(1), 79–103 (2001)

    Article  Google Scholar 

  49. Raskar, R.: Projector-Based Three Dimensional Graphics. Ph.D., University of North Carolina at Chapel Hill (2001)

    Google Scholar 

  50. Raskar, R., Welch, G., Chen, W.C.: Table-top spatially-augmented reality: bringing physical models to life with projected imagery. In: Proceedings of the IEEE and ACM International Workshop on Augmented Reality. IEEE Computer Society, Washington, DC (1999)

    Google Scholar 

  51. Raskar, R., Welch, G., Fuchs, H.: Spatially augmented reality. In: Behringer, R., Klinker, G., Mizell, D. (eds.) Augmented Reality: Placing Artificial Objects in Real Scenes, pp. 63–72. A.K. Peters Ltd., San Francisco (1998)

    Google Scholar 

  52. Raskar, R., Welch, G., Low, K.L., Bandyopadhyay, D.: Shader lamps: animating real objects with image-based illumination. In: Gortler, S.J., Myszkowski, K. (eds.) Rendering Techniques 2001. Eurographics, pp. 89–102. Springer, Vienna (2001). https://doi.org/10.1007/978-3-7091-6242-2_9

    Chapter  Google Scholar 

  53. Roberts, J.C., Ritsos, P.D., Badam, S.K., Brodbeck, D., Kennedy, J., Elmqvist, N.: Visualization beyond the desktop - the next big thing. IEEE Comput. Graph. Appl. 34(6), 26–34 (2014). https://doi.org/10.1109/MCG.2014.82

    Article  Google Scholar 

  54. Schmalstieg, D., Hollerer, T.: Augmented Reality: Principles and Practice. Addison-Wesley Professional, Boston (2016)

    Book  Google Scholar 

  55. Slater, M.: Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philos. Trans. R. Soc. B Biol. Sci. 364(1535), 3549–3557 (2009)

    Article  Google Scholar 

  56. Thomas, B.H.: Have we achieved the ultimate wearable computer? In: Proceedings of the International Symposium on Wearable Computers, pp. 104–107. IEEE (2012)

    Google Scholar 

  57. Thomas, B.H., et al.: Spatial augmented reality–a tool for 3D data visualization. In: Proceedings of the IEEE International Workshop on 3DVis, pp. 45–50. IEEE (2014)

    Google Scholar 

  58. Thomas, J.J., Cook, K.A.: Illuminating the Path: The Research and Development Agenda for Visual Analytics. IEEE Press (2005)

    Google Scholar 

  59. Wang, F., Cao, X., Ren, X., Irani, P.: Detecting and leveraging finger orientation for interaction with direct-touch surfaces. In: Proceedings of the 22nd Annual ACM Symposium on User Interface Software and Technology, pp. 23–32. ACM (2009)

    Google Scholar 

  60. Want, R., Hopper, A., Falcao, V., Gibbons, J.: The active badge location system. ACM Trans. Inf. Syst. (TOIS) 10(1), 91–102 (1992)

    Article  Google Scholar 

  61. Weigel, M., Lu, T., Bailly, G., Oulasvirta, A., Majidi, C., Steimle, J.: iSkin: flexible, stretchable and visually customizable on-body touch sensors for mobile computing. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 2991–3000. ACM (2015)

    Google Scholar 

  62. Weiser, M.: Some computer science issues in ubiquitous computing. Commun. ACM 36(7), 75–84 (1993)

    Article  Google Scholar 

  63. White, S., Feiner, S.: SiteLens: situated visualization techniques for urban site visits. In: Proceedings of the ACM Conference on Human Factors in Computing Systems, pp. 1117–1120. ACM (2009)

    Google Scholar 

  64. Willett, W., Jansen, Y., Dragicevic, P.: Embedded data representations. IEEE Trans. Vis. Comput. Graph. 23(1), 461–470 (2017)

    Article  Google Scholar 

  65. Wisneski, C., et al.: Ambient displays: turning architectural space into an interface between people and digital information. In: Streitz, N.A., Konomi, S., Burkhardt, H.-J. (eds.) CoBuild 1998. LNCS, vol. 1370, pp. 22–32. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-69706-3_4

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce H. Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thomas, B.H. et al. (2018). Situated Analytics. In: Marriott, K., et al. Immersive Analytics. Lecture Notes in Computer Science(), vol 11190. Springer, Cham. https://doi.org/10.1007/978-3-030-01388-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01388-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01387-5

  • Online ISBN: 978-3-030-01388-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics