Advertisement

Differential Invariants for Two and Three Dimensional Linear Parabolic Equations

  • Adnan AslamEmail author
  • Asghar Qadir
  • Muhammad Safdar
Conference paper
  • 415 Downloads
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 266)

Abstract

We find equivalence transformations for linear parabolic equations having two and three spatial dimensions. Invariants associated with these higher dimensional linear parabolic equations are derived using the obtained set of equivalence transformations. We apply Lie infinitesimal method to deduce the associated invariants. We find first order invariants for the the higher dimensional parabolic equations due to an invertible change of the dependent and independent variables separately. Further, obtained invariants are employed to reduce these linear higher dimensional parabolic equations to their simplest forms.

Keywords

Semi-invariants Joint differential invariants Lie infinitesimal method 

References

  1. 1.
    Ibragimov, N.H.: Equivalence Groups and Invariants of Linear and Nonlinear Equations, 1st edn. Arch ALGA (2004)Google Scholar
  2. 2.
    Olver, P.J.: Invariants and Symmetry. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  3. 3.
    Ovsiannikov, L.V.: Group Analysis of Differential Equations. Academic Press, New York (1982)zbMATHGoogle Scholar
  4. 4.
    Laplace, P.S.: Laplaces Cuevres Completes, vol. IX, p. 5. Gauthier- Villars, Paris (1893). English translation, New York, 1966Google Scholar
  5. 5.
    Cotton, E.: Sur les invariants differentiels dde quelques equations lineaires aux dérivées partiellelles du second ordre, vol. 17, p. 211. Annales Scientifique de l’École Normale Supérieure (1900)Google Scholar
  6. 6.
    Ibragimov, N.H.: Nonlinear Dyn. 28Google Scholar
  7. 7.
    Johnpillai, I.K., Mahomed, F.M.: J. Phys. A: Math. Gen. 34Google Scholar
  8. 8.
    Johnpillai, I.K., Mahomed, F.M., Wafo Soh, C.: J. Nonlinear. Math. Phys. 9Google Scholar
  9. 9.
    Mahomed, F.M.: J. Nonlinear. Math. Phys. 15Google Scholar
  10. 10.
    Mahomed, F.M., Pooe, C.A.: Proceedings of the International Conference Modern Group Analysis, vol. 9. Moscow State University, MoscowGoogle Scholar
  11. 11.
    Aslam, A., Mahomed, F.M.: Sci. World J. 2013Google Scholar
  12. 12.
    Mahomed, F.M., Qadir, A., Ramnarain, A.: Math. Prob. Eng. 2011Google Scholar
  13. 13.
    Mahomed, F.M., Safdar, M., Zama, J.: Commun. Nonlinear. Sci. Numer. Simul. 17Google Scholar
  14. 14.
    Tsaousi, C., Sophocleous, C.: J. Math. Anal. Appl. 363Google Scholar
  15. 15.
    Tsaousi, C., Sophocleous, C., Tracina, R.: J. Math. Anal. Appl. 349Google Scholar
  16. 16.
    Lie, S.: Arch. Mat. Naturvidenskab 9, Reprinted in Lie’s Ges. Abhandl 5Google Scholar
  17. 17.
    Ibragimov, N.H.: Elementary Lie Group Analysis and Ordinary Differential Equations. Wiley, New York (1999)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Basic Sciences, School of Electrical Engineering and Computer Science (SEECS)National University of Sciences and Technology (NUST)IslamabadPakistan
  2. 2.School of Natural Sciences (SNS)National University of Sciences and Technology (NUST)IslamabadPakistan
  3. 3.School of Mechanical and Manufacturing Engineering (SMME)National University of Sciences and Technology (NUST)IslamabadPakistan

Personalised recommendations