Skip to main content

HI-VAL: Iterative Learning of Hierarchical Value Functions for Policy Generation

  • Conference paper
  • First Online:
Intelligent Autonomous Systems 15 (IAS 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 867))

Included in the following conference series:

  • 1344 Accesses

Abstract

Task decomposition is effective in various applications where the global complexity of a problem makes planning and decision-making too demanding. This is true, for example, in high-dimensional robotics domains, where (1) unpredictabilities and modeling limitations typically prevent the manual specification of robust behaviors, and (2) learning an action policy is challenging due to the curse of dimensionality. In this work, we borrow the concept of Hierarchical Task Networks (HTNs) to decompose the learning procedure, and we exploit Upper Confidence Tree (UCT) search to introduce Hi-Val, a novel iterative algorithm for hierarchical optimistic planning with learned value functions. To obtain better generalization and generate policies, Hi-Val simultaneously learns and uses action values. These are used to formalize constraints within the search space and to reduce the dimensionality of the problem. We evaluate our algorithm both on a fetching task using a simulated 7-DOF KUKA light weight arm and, on a pick and delivery task with a Pioneer robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agostini, A., Celaya, E.: Reinforcement learning with a Gaussian mixture model. In: The 2010 International Joint Conference on Neural Networks, pp. 1–8, July 2010

    Google Scholar 

  2. Anand, A., Grover, A., Mausam, M., Singla, P.: ASAP-UCT: abstraction of state-action pairs in UCT. In: Proceedings of the 24th International Conference on Artificial Intelligence, IJCAI 2015, pp. 1509–1515. AAAI Press (2015). http://dl.acm.org/citation.cfm?id=2832415.2832459

  3. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47(2–3), 235–256 (2002)

    Article  Google Scholar 

  4. Bagnell, J.A., Schneider, J.G.: Autonomous helicopter control using reinforcement learning policy search methods. In: 2001 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1615–1620 (2001)

    Google Scholar 

  5. Chowdhary, G., Liu, M., Grande, R., Walsh, T., How, J., Carin, L.: Off-policy reinforcement learning with Gaussian processes. IEEE/CAA J. Autom. Sinica 1(3), 227–238 (2014)

    Article  Google Scholar 

  6. Clair, A.S., Saldanha, C., Boteanu, A., Chernova, S.: Interactive hierarchical task learning via crowdsourcing for robot adaptability. In: Refereed Workshop Planning for Human-Robot Interaction: Shared Autonomy and Collaborative Robotics at Robotics: Science and Systems, Ann Arbor, Michigan. RSS (2016)

    Google Scholar 

  7. Dietterich, T.G.: Hierarchical reinforcement learning with the MAXQ value function decomposition. J. Artif. Intell. Res. (JAIR) 13, 227–303 (2000)

    Article  MathSciNet  Google Scholar 

  8. Erol, K., Hendler, J., Nau, D.S.: HTN planning: complexity and expressivity. In: the Twelfth National Conference on Artificial Intelligence, vol. 2, AAAI 1994, pp. 1123–1128. American Association for Artificial Intelligence, Menlo Park (1994). http://dl.acm.org/citation.cfm?id=199480.199459

  9. Hostetler, J., Fern, A., Dietterich, T.G.: Sample-based tree search with fixed and adaptive state abstractions. J. Artif. Intell. Res. 60, 717–777 (2017). https://doi.org/10.1613/jair.5483

    Article  MathSciNet  MATH  Google Scholar 

  10. Jun, M., Kenji, D.: Acquisition of stand-up behavior by a real robot using hierarchical reinforcement learning. Rob. Autonom. Syst. 36(1), 37–51 (2001)

    Article  Google Scholar 

  11. Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: a survey. Int. J. Rob. Res. (2013)

    Google Scholar 

  12. Kober, J., Peters, J.R.: Policy search for motor primitives in robotics. In: Advances in Neural Information Processing Systems, pp. 849–856 (2009)

    Google Scholar 

  13. Kocsis, L., Szepesvári, C.: Bandit based monte-carlo planning, pp. 282–293. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842_29

    Google Scholar 

  14. Kohl, N., Stone, P.: Policy gradient reinforcement learning for fast quadrupedal locomotion. In: 2004 IEEE International Conference on Robotics and Automation, vol. 3, pp. 2619–2624, April 2004

    Google Scholar 

  15. Konidaris, G., Kuindersma, S., Grupen, R., Barto, A.: Robot learning from demonstration by constructing skill trees. Int. J. Rob. Res. 31(3), 360–375 (2012)

    Article  Google Scholar 

  16. Riccio, F., Capobianco, R., Nardi, D.: DOP: deep optimistic planning with approximate value function evaluation. In: Proceedings of the 2018 International Conference on Autonomous Agents and Multiagent Systems (AAMAS) (2018)

    Google Scholar 

  17. Riccio, F., Capobianco, R., Nardi, D.: Q-CP: learning action values for cooperative planning. In: 2018 IEEE International Conference on Robotics and Automation (ICRA) (2018)

    Google Scholar 

  18. Ross, S., Gordon, G.J., Bagnell, D.: A reduction of imitation learning and structured prediction to no-regret online learning. In: International Conference on Artificial Intelligence and Statistics, pp. 627–635 (2011)

    Google Scholar 

  19. Schaul, T., Ring, M.: Better generalization with forecasts. In: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, IJCAI 2013, pp. 1656–1662. AAAI Press (2013)

    Google Scholar 

  20. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mastering the game of Go with deep neural networks and tree search. Nature 529, 484–503 (2016)

    Article  Google Scholar 

  21. Silver, D., Sutton, R.S., Müller, M.: Temporal-difference search in computer Go. Mach. Learn. 87(2), 183–219 (2012)

    Article  MathSciNet  Google Scholar 

  22. Stulp, F., Schaal, S.: Hierarchical reinforcement learning with movement primitives. In: 2011 IEEE-RAS International Conference on Humanoid Robots, pp. 231–238, October 2011

    Google Scholar 

  23. Sutton, R.S., Precup, D., Singh, S.: Between MDPs and semi-MDPs: a framework for temporal abstraction in reinforcement learning. Artif. Intell. 112(1–2), 181–211 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Capobianco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Capobianco, R., Riccio, F., Nardi, D. (2019). HI-VAL: Iterative Learning of Hierarchical Value Functions for Policy Generation. In: Strand, M., Dillmann, R., Menegatti, E., Ghidoni, S. (eds) Intelligent Autonomous Systems 15. IAS 2018. Advances in Intelligent Systems and Computing, vol 867. Springer, Cham. https://doi.org/10.1007/978-3-030-01370-7_33

Download citation

Publish with us

Policies and ethics