Skip to main content

Generation of a HER2 Breast Cancer Gold-Standard Using Supervised Learning from Multiple Experts

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11043))

Abstract

Breast cancer is one of the most common cancer in women around the world. For diagnosis, pathologists evaluate the expression of biomarkers such as HER2 protein using immunohistochemistry over tissue extracted by a biopsy. This assessment is performed through microscopic inspection, estimating intensity and integrity of the membrane cells’s staining and scoring the sample as 0 (negative), 1+, 2+, or 3+ (positive): a subjective decision that depends on the interpretation of the pahologist.

This work is aimed to achieve consensus among opinions of pathologists in cases of HER2 breast cancer biopsies, using supervised learning methods based on multiple experts. The main goal is to generate a reliable public breast cancer gold-standard, to be used as training/testing dataset in future developments of machine learning methods for automatic HER2 overexpression assessment.

There were collected 30 breast cancer biopsies, with positive and negative diagnosis, where tumor regions were marked as regions-of-interest (ROIs). Magnification of \(20\times \) was used to crop non-overlapping rectangular sections according to a grid over the ROIs, leading a dataset with 1.250 images.

In order to collect the pathologists’ opinions, an Android application was developed. The biopsy sections are presented in a random way, and for each image, the expert must assign a score (0, 1+, 2+, 3+). Currently, six referent Chilean breast cancer pathologists are working on the same set of samples.

Getting the pathologists’ acceptance was a hard and time consuming task. Even more, obtaining the scoring of pathologists is a task that requires subtlety communication and time to manage their progress in the use of the application.

Supported by FONDECYT 3160559.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Akbar, S., Jordan, L., Purdie, C., Thompson, A., McKenna, S.: Comparing computer-generated and pathologist-generated tumour segmentations for immunohistochemical scoring of breast tissue microarrays. Br. J. Cancer 113(7), 1075–1080 (2015)

    Article  Google Scholar 

  2. Barlett, J., Mallon, E., Cooke, T.: The clinical evaluation of her-2 status: which test to use. J. Pathol. 199(4), 411–417 (2003)

    Article  Google Scholar 

  3. Boland, M., Markey, M., Murphy, R.: Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images. Cytometry 33(3), 366–375 (1998)

    Article  Google Scholar 

  4. Boland, M., Murphy, R.: A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of hela cells. Bioinformatics 17(12), 1213–1223 (2001)

    Article  Google Scholar 

  5. Braunschweig, T., Chung, J.-Y., Hewitt, S.: Perspectives in tissue microarrays. Comb. Chem. High Throughput Screen. 7(6), 575–585 (2004)

    Article  Google Scholar 

  6. Braunschweig, T., Chung, J.-Y., Hewitt, S.: Tissue microarrays: Bridging the gap between research and the clinic. Expert. Rev. Proteomics 2(3), 325–336 (2005)

    Article  Google Scholar 

  7. Brugmann, A., et al.: Digital image analysis of membrane connectivity is a robust measure of HER2 immunostains. Breast Cancer Res. Treat. 132(1), 41–49 (2012)

    Article  Google Scholar 

  8. Camp, R., Chung, G., Rimm, D.: Automated subcellural localization and quantification of protein expression in tissue microarrays. Nat. Med. 8(11), 1323–1327 (2002)

    Article  Google Scholar 

  9. Camp, R., Dolled-Filhart, M., King, B., Rimm, D.: Quantitative analysis of breast cancer tissue microarrays shows that both high and normal levels of HER2 expression are associated with poor outcome. Cancer Res. 63(7), 1445–1448 (2003)

    Google Scholar 

  10. Chang, V., et al.: Gold-standard and improved framework for sperm head segmentation. Comput. Methods Programs Biomed. 117(2), 225–237 (2014)

    Article  Google Scholar 

  11. Chen, R., Jing, Y., Jackson, H.: Identifying Metastases in Sentinel Lymph Nodes with Deep Convolutional Neural Networks arXiv:1608.01658 (2016)

  12. Ciampa, A., et al.: HER-2 status in breast cancer correlation of gene amplification by fish with immunohistochemistry expression using advanced cellular imaging system. Appl. Immunohistochem. Mol. Morphol. 14(2), 132–137 (2006)

    Article  Google Scholar 

  13. Dobson, L., et al.: Image analysis as an adjunct to manual HER-2 immunohistochemical review: a diagnostic tool to standardize interpretation. Histopathology 57(1), 27–38 (2010)

    Article  Google Scholar 

  14. Ellis, C., Dyson, M., Stephenson, T., Maltby, E.: HER2 amplification status in breast cancer: a comparison between immunohistochemical staining and fluorescence in situ hybridisation using manual and automated quantitative image analysis scoring techniques. J. Clin. Pathol. 58(7), 710–714 (2005)

    Article  Google Scholar 

  15. Feng, S., et al.: A framework for evaluating diagnostic discordance in pathology discovered during research studies. Arch. Pathol. Lab. Med. 138(7), 955–961 (2014)

    Article  Google Scholar 

  16. Fink, M., Ullman, S.: From aardvark to zorro: a benchmark for mammal image classification. Int. J. Comput. Vis. 77(1–3), 143–156 (2008)

    Article  Google Scholar 

  17. Fuchs, T., Buhmann, J.: Computational pathology: challenges and promises for tissue analysis. Comput. Med. Imaging Graph. 35(7–8), 515–530 (2011)

    Article  Google Scholar 

  18. Gomes, D., Porto, S., Balabram, D., Gobbi, H.: Inter-observer variability between general pathologists and a specialist in breast pathology in the diagnosis of lobular neoplasia, columnar cell lesions, atypical ductal hyperplasia and ductal carcinoma in situ of the breast. Diagn. Pathol. 9, 121 (2014)

    Article  Google Scholar 

  19. Gurcan, M., Boucheron, L., Can, A., Madabhushi, A., Rajpoot, N., Yener, B.: Histopathological image analysis: a review. IEEE Rev. Biomed. Eng. 2, 147–171 (2009)

    Article  Google Scholar 

  20. Jantzen, J., Norup, J., Dounias, G., Bjerregaard, B.: PAP-smear benchmark data for pattern classification. In: Proceedings of Nature inspired Smart Information Systems (NiSIS 2005), pp. 1–9 (2005)

    Google Scholar 

  21. Khan, A., et al.: A novel system for scoring of hormone receptors in breast cancer histopathology slides. In: 2nd IEEE Middle East Conference on Biomedical Engineering, pp. 155–158 (2014)

    Google Scholar 

  22. Lacroix-Triki, M., et al.: High inter-observer agreement in immunohistochemical evaluation of HER-2/neu expression in breast cancer: a multicentre GEFPICS study. Eur. J. Cancer 42(17), 2946–2953 (2006)

    Article  Google Scholar 

  23. Laurinaviciene, A., Dasevicius, D., Ostapenko, V., Jarmalaite, S., Lazutka, J., Laurinavicius, A.: Membrane connectivity estimated by digital image analysis of HER2 immunohistochemistry is concordant with visual scoring and fluorescence in situ hybridization results: algorithm evaluation on breast cancer tissue microarrays. Diagn. Pathol. 6(1), 87–96 (2011)

    Article  Google Scholar 

  24. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  25. Lehr, H., Jacobs, T., Yaziji, H., Schnitt, S., Gown, A.: Quantitative evaluation of HER-2/NEU status in breast cancer by fluorescence in situ hybridization and by immunohistochemistry with image analysis. Am. J. Clin. Pathol. 115(6), 814–822 (2001)

    Article  Google Scholar 

  26. Masmoudi, H., Hewitt, S., Petrick, N., Myers, K., Gavrielides, M.: Automated quantitative assessment of HER-2/NEU immunohistochemical expression in breast cancer. IEEE Trans. Med. Imaging 28(6), 916–925 (2009)

    Article  Google Scholar 

  27. McHugh, M.: Interrater reliability: the kappa statistic. Biochem. Med. 22(3), 276–282 (2012)

    Article  MathSciNet  Google Scholar 

  28. Payne, A., Singh, S.: A benchmark for indoor/outdoor scene classification. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds.) ICAPR 2005, Part II. LNCS, vol. 3687, pp. 711–718. Springer, Heidelberg (2005). https://doi.org/10.1007/11552499_78

    Chapter  Google Scholar 

  29. Prati, R., Apple, S., He, J., Gornbein, J., Chang, H.: Histopathologic characteristics predicting HER-2/NEU amplification in breast cancer. Breast J. 11(1), 433–439 (2005)

    Article  Google Scholar 

  30. Press, M., et al.: Diagnostic evaluation of HER-2 as a molecular target: an assessment of accuracy and reproducibility of laboratory testing in large, prospective, randomized clinical trials. Clin. Cancer Res. 11(18), 6598–6607 (2005)

    Article  Google Scholar 

  31. Prieto M.: Epidemiología del cáncer de mama en Chile. Revista Médica Clínica Las Condes (2011)

    Google Scholar 

  32. Seidal, T., Balaton, A., Battifora, H.: Interpretation and quantification of immunostains. Am. J. Surg. Pathol. 25(1), 1204–1207 (2001)

    Article  Google Scholar 

  33. Sim, T., Baker, S., Bsat, M.: The CMU pose, illumination, and expression database. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1615–1618 (2003)

    Article  Google Scholar 

  34. Wolff, A., et al.: American society of clinical oncology, and college of american pathologists: recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J. Clin. Oncol. 31(31), 3997–4013 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

Violeta Chang thanks pathologists M.D. Fernando Gabler, M.D. Valeria Cornejo, M.D. Leonor Moyano, M.D. Ivan Gallegos, M.D. Gonzalo De Toro and M.D. Claudia Ramis for their willing collaboration in the manual scoring of breast cancer biopsy sections. The author thanks Jimena Lopez for support with cancer tissue digitalization and the Biobank of Tissues and Fluids of the University of Chile for support with the collection of cancer biopsies. This research is funded by FONDECYT 3160559.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Violeta Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chang, V. (2018). Generation of a HER2 Breast Cancer Gold-Standard Using Supervised Learning from Multiple Experts. In: Stoyanov, D., et al. Intravascular Imaging and Computer Assisted Stenting and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis. LABELS CVII STENT 2018 2018 2018. Lecture Notes in Computer Science(), vol 11043. Springer, Cham. https://doi.org/10.1007/978-3-030-01364-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01364-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01363-9

  • Online ISBN: 978-3-030-01364-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics