Skip to main content

Spectroscopic Characterization of Silicate Amorphous Materials

  • Chapter
  • First Online:
Book cover Molecular Spectroscopy—Experiment and Theory

Abstract

In spite of a large amount of the literature on amorphous silicate structure studies and a significantly long time that has passed since the pioneer works of Lebiedev , Zachariasen, and Warren, there are still many doubts concerning the description of their structure. The selection of the correct research method allowing for a description of glass structure , specifically one that yields information on short-range order present in the amorphous state , seems to be especially important. In the framework of this manuscript, vibrational spectroscopy was proposed as a fundamental research method for describing the amorphous structure of glass materials. Interpretation procedures were also presented that enable obtaining the maximum amount of information on glass build on the basis of oscillation spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Görlich E (1989) Stan szklisty. Skrypt uczelniany AGH nr 1155, Kraków (in Polish)

    Google Scholar 

  2. Turnbull D (1969) Under what conditions can a glass be formed? Contempt Phys 10:473–488

    Article  CAS  Google Scholar 

  3. Zallen R (1994) Fizyka ciał amorficznych. PWN, Warszawa (in Polish)

    Google Scholar 

  4. Lebedev AA (1921) The polymorphism and annealing of glass. Trans Gos Opt Inst 2:1–20

    Google Scholar 

  5. Zachariasen WH (1932) The atomic arrangement in glass. J Am Ceram Soc 17:3841–3857

    Google Scholar 

  6. Randall JT, Rooksby HP, Cooper BS (1930) The structure of glasses: the evidence of X-ray diffraction. J Soc Glass Technol 14:219–228

    CAS  Google Scholar 

  7. Valenkow N, Porai-Koshitz E (1936) X-ray investigations of the glassy state. Nature 137:273–274

    Article  Google Scholar 

  8. Warren BE (1933) X-ray diffraction of vitreous silica. Z Kristallogr 86:349–358

    CAS  Google Scholar 

  9. Warren BE (1934) X-ray determination of the structure of glass. J Am Ceram Soc 17:249–254

    Article  CAS  Google Scholar 

  10. Warren BE, Krutter H, Morningstar O (1936) Fourier analysis of X-ray patterns of vitreous SiO2 and B2O2. J Am Ceram Soc 19:202–206

    Article  CAS  Google Scholar 

  11. Wright AC, Leadbetter AL (1976) Diffraction studies of glass structure. Phys Chem Glasses 17:122–145

    CAS  Google Scholar 

  12. Mozzi RL, Warren BE (1969) The structure of vitreous silica. J Appl Cryst 2:164–172

    Article  CAS  Google Scholar 

  13. Tossell JA, Gibbs GV (1978) The use of molecular-orbital calculations on model systems for the prediction of bridging-bond-angle variations in siloxanes, silicates, silicon nitrides and silicon suffides. Acta Crystallogr A 34:463–472

    Article  Google Scholar 

  14. Baur WH (1980) Straight Si–O–Si bridging bonds do exist in silicates and silicon dioxide polymorphs. Acta Crystallogr B 36:2198–2202

    Article  Google Scholar 

  15. Demkina LI (1958) Issledowania zavisimosti swoistw stekoł ot ich sostawa. Izd Obr Prom, Moskwa

    Google Scholar 

  16. Babcock CL (1977) Silicate glass technology methods. Wiley, New York

    Google Scholar 

  17. Babcock CL (1968) Substructures in silicate glasses. J Am Ceram Soc 51:163–169

    Article  CAS  Google Scholar 

  18. Elliott SR (1991) Medium-range structural order in covalent amorphous solids. Nature 354:445–452

    Article  CAS  Google Scholar 

  19. Handke M, Mozgawa W (1993) Vibrational spectroscopy of the amorphous silicates. Vib Spectrosc 5:75–84

    Article  CAS  Google Scholar 

  20. Sitarz M, Mozgawa W, Handke M (1999) Rings in the structure of silicate glasses. J Mol Struct 511–512:281–285

    Article  Google Scholar 

  21. Sitarz M, Mozgawa W, Handke M (2000) Identification of silicooxygen rings in SiO2 based on IR spectra. Spectrochim Acta A 56:1819–1823

    Article  Google Scholar 

  22. Sitarz M (2011) The structure of simple silicate glasses in the light of middle infrared spectroscopy studies. J Non-Cryst Solid 357:1603–1608

    Article  CAS  Google Scholar 

  23. Phillips JC (1986) Comments on “the J.C. Phillips model for vitreous SiO2: a critical appraisal”. Solid State Commun 60:299

    Article  CAS  Google Scholar 

  24. Hosemann R, Hentschel MP, Schmeisser U, Bruckner R (1986) Structural model of vitreous silica based on microparacrystal principles. J Non-Cryst Solids 83:223–234

    Article  CAS  Google Scholar 

  25. Konnert JH, Karle J (1973) The computation of radial distribution functions for glassy materials. Acta Crystallogr 429:702–710

    Article  Google Scholar 

  26. Konnert JH, Ferguson GA, Karle J (1973) Crystalline ordering in silica and germania glasses. Science 179:177–179

    Article  CAS  PubMed Central  Google Scholar 

  27. Konnert JH, D’Antonio P, Karle J (1982) Comparison of radial distribution function for silica glass with those for various bonding topologies: use of correlation function. J Non-Cryst Solids 53:135–144

    Article  CAS  Google Scholar 

  28. Goodman CHL (1975) Strained mixed-cluster model for glass structure. Nature 257:370–372

    Article  CAS  Google Scholar 

  29. Gaskell PH (1991) Glasses and amorphous materials. In: Zarzycki J (ed) Materials science and technology, vol 9. VCH, Weinheim, Germany, p 175

    Google Scholar 

  30. Görlich E (1977) Structure and phase transformations in glass. Rev Int Hautes Temp Refract 14:201–206

    Google Scholar 

  31. Görlich E, Błaszczak K (1977) Polymorphic transition in silica glass. Nature 265:39–40

    Article  Google Scholar 

  32. Görlich E (1982) The structure of SiO2—current views. Ceram Int 8:3–16

    Article  Google Scholar 

  33. Verwej H, Konijnendijk WL (1976) Structural units in K2O–PbO–SiO2 glasses by Raman spectroscopy. J Am Ceram Soc 59:517–521

    Article  Google Scholar 

  34. Gaskell PH, Eckersley MC, Barnes AC, Chieux P (1991) Medium-range order in the cation distribution of a calcium silicate glass. Nature 350:675–677

    Article  CAS  Google Scholar 

  35. Wilson EB, Decius JC, Cross PC (1955) Molecular vibrations. McGraw-Hill, New York

    Google Scholar 

  36. Griffiths PR, Pariente GL (1986) Introduction to spectral deconvolution. Trends Anal Chem 5:209–215

    Article  CAS  Google Scholar 

  37. Zlokazov VB (1978) UPEAK—spectro-oriented routine for mixture decomposition. Comput Phys Commun 13:389–398

    Article  CAS  Google Scholar 

  38. von Meerwall E (1975) A general-purpose routine for the analysis of spectroscopic peak shapes. Comput Phys Commun 10:145–154

    Article  Google Scholar 

  39. Mysen BO, Finger LW, Virgo D, Seifert FA (1982) Curve-fitting of Raman spectra of silicate glasses. Am Mineral 67:686–695

    CAS  Google Scholar 

  40. von Meerwall E (1975) A fortran code for automatic spectrum analysis on medium-scale computers. Comput Phys Commun 9:351–1359

    Article  Google Scholar 

  41. Handke M, Mozgawa W, Nocuń M (1994) Specific features of the IR spectra of silicate glasses. J Mol Struct 325:129–136

    Article  CAS  Google Scholar 

  42. Lazarev AN, Mirgorodsky AP (1991) Molecular force constants in dynamical model of α-quartz. Phys Chem Miner 18:231–243

    Article  CAS  Google Scholar 

  43. Dowty E (1987) Vibrational interactions of tetrahedra in silicate glasses and crystals. Phys Chem Miner 14:80–93

    Article  CAS  Google Scholar 

  44. Dowty E (1987) Vibrational interactions of tetrahedra in silicate glasses and crystals. Phys Chem Miner 14:122–138

    Article  CAS  Google Scholar 

  45. Dowty E (1987) Vibrational interactions of tetrahedra in silicate glasses and crystals. Phys Chem Miner 14:542–552

    Article  CAS  Google Scholar 

  46. Handke M, Mozgawa W (1995) Model quasi-molecule Si2O as an approach in the IR spectra description glassy and crystalline framework silicates. J Mol Struct 348:341–344

    Article  CAS  Google Scholar 

  47. Bell RJ, Dean P (1970) Atomic vibrations in vitreous silica. Discuss Faraday Soc 50:55–61

    Article  Google Scholar 

  48. Laughlin RB, Joannopoulos JD (1977) Phonons in amorphous silica. Phys Rev B 16:2942–2952

    Article  CAS  Google Scholar 

  49. Barrow GM (1962) Introduction to molecular spectroscopy. MCGraw-Hill Book Company Inc, New York

    Google Scholar 

  50. Galeener FL, Mikkelsen JC (1981) Vibrational dynamics in 18O-substituted vitreous SiO2. Phys Rev B 23:5527–5530

    Article  CAS  Google Scholar 

  51. Sato RK, McMillan PF (1987) An infrared and Raman study of the isotopic species of alpha-quartz. J Phys Chem 91:3494–3498

    Article  CAS  Google Scholar 

  52. Rakow AV (1962) Temperature dependence of the line width of infrared absorption spectra. Opt Spektr 13:369–373

    Google Scholar 

  53. Khanna RK, Stranz DD, Donn B (1981) A spectroscopic study of intermediates in the condensation of refractory smokes: matrix isolation experiments of SiO. J Chem Phys 74:2108–2115

    Article  CAS  Google Scholar 

  54. Görlich E, Błaszczak K, Sieminska G (1974) Infra-red studies of vitreous silica at elevated temperatures. J Mat Sci 9:1926–1932

    Article  Google Scholar 

  55. Taylor WR (1990) Application of infrared spectroscopy to studies of silicate glass structure: examples from the melilite glasses and the systems Na2O–SiO2 and Na2O–Al2O3–SiO2. Proc Indian Acad Sci 99:99–117

    CAS  Google Scholar 

  56. Shiraishi Y, Kusabiraki K (1990) Infrared spectrum oh high temperature melts by means of emission spectroscopy. High Temp Sci 28:67–77

    Google Scholar 

  57. Handke M, Nocuń M (1997) Vibrational spectroscopy of lithium silicates and aluminosilicates in crystalline form. Mikrochim Acta 14:507–510

    CAS  Google Scholar 

  58. Sharma SK, Philpotts JA, Matson DW (1985) Ring distributions in alkali- and alkaline-earth aluminosilicate framework glasses—a Raman spectroscopic study. J Non-Cryst Solids 71:403–410

    Article  CAS  Google Scholar 

  59. Tossel JA (1993) A theoretical study of the molecular basis of the Al avoidance rule and of the spectral characteristics of Al–O–Al linkages. Am Mineral 78:911–920

    Google Scholar 

  60. Tarte P (1967) Infra-red spectra of inorganic aluminates and characteristic vibrational frequencies of AlO4 tetrahedra and AlO6 octahedra. Spectrochim Acta A 23:2127–2143

    Article  CAS  Google Scholar 

  61. Sitarz M (2008) Influence of modifying cations on the structure and texture of silicate–phosphate glasses. J Mol Struct 887:237–248

    Article  CAS  Google Scholar 

  62. Sitarz M, Rokita M, Handke M, Galuskin EW (2003) Structural studies of the NaCaPO4–SiO2 sol-gel derived materials. J Mol Struct 651–653:489–498

    Article  Google Scholar 

  63. Li H, Liu S, Zhang T, Wu H, Guo S (2018) The evolution of the network structure in tin-fluoro-phosphate glass with increasing temperature. J Non-Crystal Solids 492:84–93

    Article  CAS  Google Scholar 

  64. Sitarz M, Bulat K, Olejniczak Z (2012) Structure and microstructure of glasses from NaCaPO4–SiO2–BPO4 system. Vib Spectrosc 61:72–77

    Article  CAS  Google Scholar 

  65. Bułat K, Sitarz M, Wajda A (2014) Influence of aluminium and boron ions on the crystallization of silicate-phosphate glasses from NaCaPO4–SiO2 system. J Non-Cryst Solids 401:2007–2012

    Article  Google Scholar 

  66. Kaur R, Singh S, Pandey OP (2013) Absorption spectroscopic studies on gamma irradiated bismuth borosilicate glasses. J Mol Struct 1049:386–391

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Król .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mozgawa, W., Sitarz, M., Król, M. (2019). Spectroscopic Characterization of Silicate Amorphous Materials. In: Koleżyński, A., Król, M. (eds) Molecular Spectroscopy—Experiment and Theory. Challenges and Advances in Computational Chemistry and Physics, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-030-01355-4_15

Download citation

Publish with us

Policies and ethics