Skip to main content

Vibrational Spectroscopy of Zeolites

Theory Versus Experiment

  • Chapter
  • First Online:
Molecular Spectroscopy—Experiment and Theory

Abstract

In this chapter, the ab initio calculations have been used to analyze the structural properties and vibrational spectra of selected zeolites. The spectra obtained as a result of theoretical calculations along with their interpretation were used to describe the experimental spectra of real zeolite structures. Presented results show that in the experimental spectra of zeolites one can distinguish the bands associated with characteristic vibrations of a bigger element of the structure, composed of tetrahedra, the primary building blocks. It was also shown that the composite envelopes of particular bands are significantly affected by component bands associated with characteristic vibrations of building units that form zeolite structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith JV (1984) Definition of a zeolite. Zeolites 4:309–310

    Article  CAS  Google Scholar 

  2. Ciciszwili GW, Andronikaszwili TG, Kirov GN, Filizowa ŁD (1990) Zeolity naturalne. Wydawnictwo Naukowo-Techniczne, Warszawa (in Polish)

    Google Scholar 

  3. Xu R, Pang W, Yu J, Huo Q, Chen J (2009) Chemistry of zeolites and related porous materials: synthesis and structure. Wiley, New York

    Google Scholar 

  4. Auerbach SM, Carrado KA, Dutta PK (2003) Handbook of zeolite science and technology. Marcel Dekker, New York

    Book  Google Scholar 

  5. Gottardi G, Galli E (eds) (1985) Natural zeolites, mineral and rocks 18. Springer, Berlin

    Google Scholar 

  6. Förster H (1992) Infrared studies of zeolite complex. In: Davies JED (ed) Spectroscopic and computational systems. Kluwer Academic Publishers, Amsterdam

    Google Scholar 

  7. Klinowski J (1997) Solid-state NMR studies of molecular sieve catalysts. Chem Rev 91:1459–1479

    Article  Google Scholar 

  8. Breck DW (1974) Zeolite molecular sieves. Wiley, New York

    Google Scholar 

  9. Baerlocher C, McCusker L (2002) Database of zeolite structures

    Google Scholar 

  10. Meier WM (1968) Molecular sieves. Society of Chemical Industry, London

    Google Scholar 

  11. Flaningen EM, Khatami H, Szymanski HA (1971) Infrared structural studies of zeolites frameworks. Adv Chem Ser 101:201–229

    Article  Google Scholar 

  12. de Man AJM, van Santen RA (1992) The relation between zeolite framework structure and vibrational spectra. Zeolites 12:269–279

    Article  Google Scholar 

  13. Bordiga S, Lamberti C, Bonino F, Travert A, Frédéric T-S, Thibault-Starzyk F (2015) Probing zeolites by vibrational spectroscopies. Chem Soc Rev 44:7262–7341

    Article  CAS  PubMed  Google Scholar 

  14. Ermoshin VA, Smirnov KS, Bougerard D (1996) Molecular dynamics calculation of the vibrational spectra of OH groups in zeolites and on silica surfaces. Surf Sci 368:147–151

    Article  CAS  Google Scholar 

  15. Pechar F, Rykl D (1985) Infrared Spectra of Natural Zeolites. Rozpr. Ceskosl. Akad. Ved., Praha

    Google Scholar 

  16. Uzunova EL, Niklov GS (2000) Vibrational modes of double four-member rings of oxygen-bridged silicon and aluminum atoms: a DFT study. J Phys Chem B 104:7299–7305

    Article  CAS  Google Scholar 

  17. Geidel E, Boehling H, Peuker Ch, Pliz W (1991) Approximate assignment of vibrational frequencies of the NaX framework. Stud Surf Sci Catal 65:511–519

    Article  CAS  Google Scholar 

  18. Geidel E, Lechert H, Döbler J, Jobic H, Calzaferri G, Bauer F (2003) Characterization of mesoporous materials by vibrational techniques. Microporous Mesoporous Mater 65:31–42

    Article  CAS  Google Scholar 

  19. Karge HG, Geidel E (2004) Vibrational spectroscopy. Vib Spectrosc 2:1–200

    Google Scholar 

  20. Sherwood PMA (1972) Vibrational spectroscopy of solids. Cambridge University Press, Cambridge

    Google Scholar 

  21. Adams DM, Newton DC (1970) Tables for factor group and point group analysis. Beckmann, Croydon

    Google Scholar 

  22. Bhagavantam S, Venkatarayudu T (1969) Theory of groups and its application to physical problem. Academic Press, New York

    Google Scholar 

  23. Ferraro JR, Ziomek JS (1975) Introduction group theory and its application to molecular structure. Plenum Press, New York

    Book  Google Scholar 

  24. Handke M, Mozgawa W (1993) Vibrational spectroscopy of the amorphous silicates. Vib Spectrosc 5:75–84

    Article  CAS  Google Scholar 

  25. Handke M, Mozgawa W (1995) Model quasi-molecule Si2O as an approach in the IR spectra description glassy and crystalline framework silicates. J Mol Struct 348:341–344

    Article  CAS  Google Scholar 

  26. Sefcik J, Goddard WA (2001) Thermochemistry of silicic acid deprotonation: comparison of gas-phase and solvated DFT calculations to experiment. Geochim Cosmochim Acta 65:4435–4443

    Article  CAS  Google Scholar 

  27. Tossell JA (2005) Theoretical study on the dimerization of Si(OH)4 in aqueous solution and its dependance on temperature and dielectric constant. Geochim Cosmochim Acta 69:283–291

    Article  CAS  Google Scholar 

  28. Kubicki DJ, Sykes D (1993) Molecular orbital calculations on H6Si2O7 with variable angle: Implications for high-presure vibrational spectra of silicate glasses. Am Min 78:253–255

    CAS  Google Scholar 

  29. Jastrzębski W (2006) Spektroskopia oscylacyjna pierścieni krzemotlenowych w strukturach krzemianów i siloksanów. AGH University of Sciecne and Technology, Kraków (in Polish)

    Google Scholar 

  30. Handke M (1984) Spektroskopia wibracyjna krzemianów a charakter wiązania Si–O w krzemianach (in polish). Zeszyty Naukowe AGH, Ceramika 48, Kraków

    Google Scholar 

  31. Mikuła A, Król M, Mozgawa W, Koleżyński A (2018) New approach for determination of the influence of long-range order and selected ring oscillations on IR spectra in zeolites. Spectrochim Acta A 195:62–67

    Article  Google Scholar 

  32. Handke M, Sitarz M, Mozgawa W (1998) Model of silicooxygen ring vibrations. J Mol Struct 450:229–238

    Article  CAS  Google Scholar 

  33. Marcolli C, Calzaferri G (1997) Vibrational structure of monosubstituted octahydrosilasesquioxanes. J Phys Chem B 101:4925–4933

    Article  CAS  Google Scholar 

  34. Bornhauser P, Calzaferri G (1996) Ring-opening vibrations of spherosiloxanes. J Phys Chem 100:2035–2044

    Article  CAS  Google Scholar 

  35. Pechar F, Rykl D (1983) Study of the vibrational spectra of natural natrolit. Can Mineral 21:689–695

    CAS  Google Scholar 

  36. Król M, Mozgawa W, Jastrzbski W, Barczyk K (2012) Application of IR spectra in the studies of zeolites from D4R and D6R structural groups. Microporous Mesoporous Mater 156:181–188

    Article  Google Scholar 

  37. Mozgawa W, Jastrzębski W, Handke M (2005) Vibrational spectra of D4R and D6R structural units. J Mol Struct 744–747:663–670

    Article  Google Scholar 

  38. Mozgawa W, Jastrzębski W, Handke M (2006) Cation-terminated structural clusters as a model for the interpretation of zeolite vibrational spectra. J Mol Struct 792–793:163–169

    Article  Google Scholar 

  39. Pápai I, Goursot A, Fajula F (1994) Density functional calculations on model clusters of zeolite-β. J Phys Chem 98:4654–4659

    Article  Google Scholar 

  40. Pidko E, Hensen EJM, Zhidomirov GM, van Santen R (2008) Nonlocalized charge compensation in zeolites: a periodic DFT study of cationic gallium-oxide clusters in mordenite. J Catal 255:139–143

    Article  CAS  Google Scholar 

  41. Hill JR, Sauer J (1995) Molecular mechanics potential for silica and zeolite catalysts based on ab initio calculations. 2. Aluminosilicates. J Phys Chem 99:9536–9550

    Article  CAS  Google Scholar 

  42. Ermoshin VA, Smirnov KS, Bougeard D (1996) Ab initio generalized valence force field for zeolite modelling 2. Aluminosilicates. Chem Phys 209:41–51

    Article  CAS  Google Scholar 

  43. Mozgawa W, Handke M, Jastrzębski W (2004) Vibrational spectra of aluminosilicate structural clusters. J Mol Struct 704:247–257

    Article  CAS  Google Scholar 

  44. Ermoshin VA, Smirnov KS, Bougeard D (1997) Ab initio force field for aluminosilicates; molecular dynamics simulation of the infrared spectra of zeolites. J Mol Struct 410–411:371–374

    Google Scholar 

  45. Hill JR, Sauer J (1997) Molecular mechanics potential for silica and zeolite catalysts based on ab initio calculations. 1. Dense and microporous silica. J Phys Chem 98:1238–1244

    Article  Google Scholar 

  46. Mozgawa W (2007) Spektroskopia oscylacyjna zeolitów. Uczelniane Wydawnictwa Naukowo-Dydaktyczne AGH, Kraków (in Polish)

    Google Scholar 

  47. Mozgawa W, Król M, Barczyk K (2011) FT-IR studies of zeolites from different structural groups. Chemik 65(7):667–674

    CAS  Google Scholar 

  48. Mozgawa W, Bajda T (2006) Application of vibrational spectra in the studies of cation sorption on zeolites. J Mol Struct 792–793:170–175

    Article  Google Scholar 

  49. Huang Y, Jiang Z (1997) Vibrational spectra of completely siliceous zeolite A. Microporous Mater 12:341–345

    Article  CAS  Google Scholar 

  50. Loewenstein W (1954) The distribution of aluminum in the tetrahedra of silicates and aluminates. Am Miner 39:92–96

    CAS  Google Scholar 

  51. Mozgawa W, Sitarz M (2002) Vibrational spectra of aluminosilicate ring structures. J Mol Struct 614:273–279

    Article  CAS  Google Scholar 

  52. Fernández-Jiménez A, Palomo A (2005) Mid-infrared spectroscopic studies of alkali-activated fly ash structure. Microporous Mesoporous Mater 86:207–214

    Article  Google Scholar 

  53. Ma Y, Liu Z, Geng A, Vogt T, Lee Y (2016) Structural and spectroscopic studies of alkali-metal exchanged stilbites. Microporous Mesoporous Mater 224:339–348

    Article  CAS  Google Scholar 

  54. Yuan J, Yang J, Ma H, Liu C (2016) Crystal structural transformation and kinetics of NH4+/Na+ ion-exchange in analcime. Microporous Mesoporous Mater 222:202–208

    Article  CAS  Google Scholar 

  55. Mozgawa W, Bajda T (2005) Spectroscopic study of heavy metals sorption on clinoptilolite. Phys Chem Minerals 31:706–713

    Article  CAS  Google Scholar 

  56. Mozgawa W, Król M, Bajda T (2009) Application of IR spectra in the studies of heavy metal cations immobilization on natural sorbents. J Mol Struct 924–926:427–433

    Article  Google Scholar 

  57. Handke M, Jastrzębski W (2004) Vibrational spectroscopy of the ring structures in silicates and siloxanes. J Mol Struct 704:63–69

    Article  CAS  Google Scholar 

  58. Król M, Mozgawa W, Jastrzębski W (2016) Theoretical and experimental study of ion-exchange process on zeolites from 5–1 structural group. J Porous Mater 23:1–9

    Article  Google Scholar 

  59. Pedone A, Biczysko M, Barone V (2010) Environmental effects in computational spectroscopy: accuracy and interpretation. Chem Phys Chem 11:1812–1832

    CAS  PubMed  Google Scholar 

  60. Creighton JA, Deckman HW, Newsam JM (1994) Computer simulation and interpretation of the infrared and Raman spectra of sodalite frameworks. J Phys Chem 98:448–459

    Article  CAS  Google Scholar 

  61. Iyer KA, Singer SJ (1994) Local-mode analysis of complex zeolite vibrations: Sodalite. J Phys Chem 98:12670–12678

    Article  CAS  Google Scholar 

  62. Iyer KA, Singer SJ (1994) Local-mode analysis of complex zeolite vibrations: zeolite A. J Phys Chem 98:12679–12686

    Article  CAS  Google Scholar 

  63. Mikuła A, Król M, Koleżyński A (2015) Periodic model of an LTA framework. J Mol Model 21:275

    Article  PubMed  Google Scholar 

  64. Koleżyński A, Mikuła A, Król M (2016) Periodic model of LTA framework containing various non-tetrahedral cations. Spectrochim Acta A 157:17–25

    Article  Google Scholar 

  65. Blackwell CS (1979) Investigation of zeolite frameworks by vibrational properties. 2. The double-six-ring in group 4 zeolites. J Phys Chem 83:3257–3261

    Article  CAS  Google Scholar 

  66. Rodriguez A (1995) Vibrational spectroscopy and structural analysis of Na-Y zeolite. Vib Spectrosc 9:225–228

    Article  Google Scholar 

  67. Falabella Sousa-Aguiar E, Camorim VLD, Zotin FMZ, Correa dos Santos RL (1998) A Fourier transform infrared spectroscopy study of La-, Nd-, Sm-, Gd- and Dy-containing Y zeolites. Microporous Mesoporous Mater 25:25–34

    Article  Google Scholar 

  68. Król M, Mozgawa W, Barczyk K, Bajda T, Kozanecki M (2013) Changes in the vibrational spectra of zeolites due to sorption of heavy metal cations. J Appl Spectrosc 80(5):662–668

    Article  Google Scholar 

  69. Mikuła A, Król M, Koleżyński A (2015) The influence of the long-range order on the vibrational spectra of structures based on sodalite cage. Spectrochim Acta A 144:273–280

    Article  Google Scholar 

  70. Mikuła A, Król M, Koleżyński A (2016) Experimental and theoretical spectroscopic studies of Ag-, Cd- and Pb-sodalite. J Mol Struct 1126:110–116

    Article  Google Scholar 

  71. Schwartz M, Berry RJ (2001) Ab initio investigation of substituent effects on bond dissociation enthalpies in siloxanes and silanols. J Mol Struct 538:9–17

    Article  CAS  Google Scholar 

  72. Baker MD, Godber J, Ozin G (1985) Frequency and intensity considerations in the far-IR spectroscopy of faujasite xeolites: experiment and theory. Metal cation vibrational assignments, site locations, and populations. J Am Chem Soc 107:3033–3043

    Article  CAS  Google Scholar 

  73. Baker MD, Godber J, Helwig K, Ozin GA (1988) Probing extra-framework cations in alkali- and alkaline-earth-metal Linde type A zeolites by fourier transform far-infrared spectroscopy. J Phys Chem 92(21):6017–6024

    Article  CAS  Google Scholar 

  74. Mortier WJ (1992) Compilation of extra framework sites in zeolites. Butterworth & Co., Leuven, pp 41–48

    Google Scholar 

  75. Günther C, Richter H, Voigt I, Michaelis A, Tzscheutschler H, Krause-Rehberg R, Serra JM (2015) Synthesis and characterization of a sulfur containing hydroxy sodalite without sulfur radicals. Microporous Mesoporous Mater 214:1–7

    Article  Google Scholar 

  76. Bonaccorsi E, Orlandi P (2003) Marinellite, a new feldspathoid of the cancrinite-sodalite group. Eur J Mineral 15:1019–1027

    Article  CAS  Google Scholar 

  77. Hackbarth K, Gesing TM, Fechtelkord M, Stief F, Buhl J (1999) Synthesis and crystal structure of carbonate cancrinite Na8[AlSiO4]6CO3(H2O)3.4, grown under low-temperature hydrothermal conditions. Microporous Mesoporous Mater 30:347–358

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Science Centre, Poland, under grant No. 2015/17/B/ST8/01200.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Król .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Król, M., Koleżyński, A., Mikuła, A., Mozgawa, W. (2019). Vibrational Spectroscopy of Zeolites. In: Koleżyński, A., Król, M. (eds) Molecular Spectroscopy—Experiment and Theory. Challenges and Advances in Computational Chemistry and Physics, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-030-01355-4_10

Download citation

Publish with us

Policies and ethics