Skip to main content

A Novel Methodology for Simulation of EEG Traveling Waves on the Folding Surface of the Human Cerebral Cortex

  • Conference paper
  • First Online:
Advances in Neural Computation, Machine Learning, and Cognitive Research II (NEUROINFORMATICS 2018)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 799))

Included in the following conference series:

Abstract

There is an ample evidence on the existence of traveling waves in the cortex of subhuman animals such as rats, ferrets, monkey, and even birds. These waves have been registered invasively by electrical and optical imaging techniques. Such methodology is not possible in healthy humans. Non-invasive EEG recordings show scalp waves propagation at rates two orders greater than the data obtained invasively in animal experiments. At the same time, it has recently been argued that the traveling waves of both local and global nature do exist in the human cortex. In this article, we report a novel methodology for simulation of EEG spatial dynamics as produced by depolarization waves with parameters taken from animal models. Our simulation of radially propagating waves takes into account the geometry of the surface of the gyri and sulci in the areas of the visual, motor, somatosensory and auditory cortex. The dynamics of the electrical field distribution on the scalp in our simulations is fully consistent with the experimental EEG data recorded in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adrian, E.D., Matthews, B.H.C.: The interpretation of potential waves in the cortex. J. Physiol. 81, 440–471 (1934)

    Article  Google Scholar 

  2. Adrian, E.D., Yamagiwa, K.: The origin of the Berger rhythm. Brain 58, 323–351 (1935)

    Article  Google Scholar 

  3. Lindsley, D.B.: Foci of activity of the alpha rhythm in the human electroencephalogram. J. Exp. Psychol. 23, 159–171 (1938)

    Article  Google Scholar 

  4. Walter, W.G.: Toposcopy. In: Third International EEG Congress 1953, Symposium I on Recent Developments in Electroencephalographic Techniques, pp. 7–16. Elsevier, Amsterdam (1953)

    Google Scholar 

  5. Petsche, H., Marko, A.: Toposkopische Untersuchungen zur Ausbreitung des Alpharhythmus. Wien. Z. Nervenheilk. 12, 87–100 (1955)

    Google Scholar 

  6. Shipton, H.W.: An improved electrotoposcope. Electroencephalogr. Clin. Neurophysiol. 9, 182 (1957)

    Article  Google Scholar 

  7. Anan’ev, V.M., Livanov, M.N., Bekhtereva, N.P.: Electroencephaloscopic studies on bioelectric map of the cerebral cortex in cerebral tumors and injuries. Zh. Nevropatol. Psikhiatr. Im. SS Korsakova 56, 778–790 (1956)

    Google Scholar 

  8. Livanov, M.N., Anan’ev, V.M.: Electroencephaloscopy. Medgiz, Moscow (1960)

    Google Scholar 

  9. Monakhov, K.K.: “Overflows” as a special form of the spatial distribution of electrical activity of the brain. Proc. IHNA 6, 279–291 (1961)

    Google Scholar 

  10. Dubikaytis, Yu.V, Dubakitis, V.V.: On the potential field and alpha rhythm on the surface of the human head. Biophysics 7, 345–350 (1962)

    Google Scholar 

  11. Remond, A.: Integrated and topographical analysis of the EEG. Electroencephalogr. Clin. Neurophysiol. 20, 64–67 (1961)

    Google Scholar 

  12. Hughes, J.R.: The phenomenon of travelling waves: a review. Clin. Electroencephalogr. 26, 1–6 (1995)

    Article  Google Scholar 

  13. Ferrea, E., et al.: Large-scale, high-resolution electrophysiological imaging of field potentials in brain slices with microelectronic multielectrode arrays. Front. Neural. Circuits. 6, 80 (2012)

    Article  Google Scholar 

  14. Biswal, B., Yetkin, F.Z., Haughton, V.M., Hyde, J.S.: Functional connectivity in the motor cortex of resting human brain using EP MRI. Magn. Reson. Med. 34, 537–541 (1995)

    Article  Google Scholar 

  15. Hindriks, R., van Putten, M.J., Deco, G.: Intra-cortical propagation of EEG alpha oscillations. Neuroimage 103, 444–453 (2014)

    Article  Google Scholar 

  16. Matsui, T., Murakami, T., Ohki, K.: Transient neuronal coactivations embedded in globally propagating waves underlie resting-state functional connectivity. Proc. Natl. Acad. Sci. U.S.A. 113, 6556–6561 (2016)

    Article  Google Scholar 

  17. Alexander, D.M., et al.: Traveling waves and trial averaging: the nature of single-trial and averaged brain responses in large-scale cortical signals. Neuroimage 73, 95–112 (2013)

    Article  Google Scholar 

  18. Zhang, H., Andrew, J., Watrous, A.J., Patel, A., Jacobs, J.: Theta and alpha oscillations are traveling waves in the human neocortex. BioRxiv (2017)

    Google Scholar 

  19. Martinet, L.E., et al.: Human seizures couple across spatial scales through travelling wave dynamics. Nat. Commun. 8, 4896 (2017)

    Article  Google Scholar 

  20. Rubino, D., Robbins, K.A., Hatsopoulos, N.G.: Propagating waves mediate information transfer in the motor cortex. Nat. Neurosci. 9, 1549–1557 (2006)

    Article  Google Scholar 

  21. Ferezou, I., Bolea, S., Petersen, C.C.: Visualizing the cortical representation of whisker touch: Voltage-sensitive dye imaging in freely moving mice. Neuron 50, 617–629 (2006)

    Article  Google Scholar 

  22. Reimer, A., Hubka, P., Engel, A.K., Kral, A.: Fast propagating waves within the rodent auditory cortex. Cereb. Cortex 21, 166–177 (2011)

    Article  Google Scholar 

  23. Takahashi, K., Saleh, M., Richard, D., Penn, R.D., Hatsopoulos, N.G.: Propagating waves in human motor cortex. Front. Hum. Neurosci. 5, 40 (2011)

    Article  Google Scholar 

  24. Muller, L., Reynaud, A., Chavane, F., Destexhe, A.: The stimulus-evoked population response in visual cortex of awake monkey is a propagating wave. Nat. Commun. 5, 3675 (2014)

    Article  Google Scholar 

  25. Verkhliutov, V.M.: A model of the structure of the dipole source of the alpha rhythm in the human visual cortex. Zh. Vyssh. Nerv. Deiat. Im. I P Pavlova 46, 496–503 (1996)

    Google Scholar 

  26. Fuchs, M., Drenckhahn, R., Wischmann, H.A., Wagner, M.: An improved boundary element method for realistic volume-conductor modeling. IEEE Trans. Biomed. Eng. 45, 980–997 (1998)

    Article  Google Scholar 

  27. Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library User Guide and Reference Manual. Pearson Education, Upper Saddle River (2002)

    Google Scholar 

  28. Ermentrout, G.B., Kleinfeld, D.: Traveling electrical waves in cortex: insights from phase dynamics and speculation on a computational role. Neuron 29, 33–44 (2001)

    Article  Google Scholar 

  29. Han, F., Caporale, N., Dan, Y.: Reverberation of recent visual experience in spontaneous cortical waves. Neuron 60, 321–327 (2008)

    Article  Google Scholar 

  30. Zheng, L., Yao, H.: Stimulus-entrained oscillatory activity propagates as waves from area 18 to 17 in cat visual cortex. PLoS ONE 7, 41960 (2012)

    Article  Google Scholar 

  31. Wu, J.-Y., Xiaoying, H., Chuan, Z.: Propagating waves of activity in the neocortex: what they are, what they do. Neuroscientist 14, 487–502 (2008)

    Article  Google Scholar 

  32. Tadel, F., Baillet, S., Mosher, J.C., Pantazis, D., Leahy, R.M.: Brainstorm: a user friendly application for MEG/EEG analysis. Comput. Intell. Neurosci. 2011, 879716 (2011)

    Article  Google Scholar 

  33. Kybic, J., Clerc, M., Abboud, T., Faugeras, O., Keriven, R., Papadopoulo, T.: A common formalism for the integral formulations of the forward EEG problem. IEEE Trans. Med. Imaging 24, 12–28 (2005)

    Article  Google Scholar 

  34. Gramfort, A., Papadopoulo, T., Olivi, E., Clerc, M.: OpenMEEG: opensource software for quasistatic bioelectromagnetics. BioMed. Eng. OnLine 45, 9 (2010)

    Google Scholar 

  35. Hämäläinen, M., Hari, R., Ilmoniemi, R., Knuutila, J., Lounasmaa, O.V.: Magnetoencephalography - theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 65, 413–497 (1993)

    Article  Google Scholar 

  36. Markand, O.N.: Alpha rhythms. J. Clin. Neurophysiol. 2, 163–189 (1990)

    Article  Google Scholar 

  37. Verkhlyutov, V.M.: “Overflows” and traveling waves of the human cerebral cortex. Dissertation for the degree of a Candidate of Medical Sciences, Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, (1999)

    Google Scholar 

  38. Patten, T.M., Rennie, C.J., Robinson, P.A., Gong, P.: Human cortical traveling waves: dynamical properties and correlations with responses. PLoS ONE 7, 38392 (2012)

    Article  Google Scholar 

  39. Manjarrez, E., Vázquez, M., Flores, A.: Computing the center of mass for traveling alpha waves in the human brain. Brain Res. 1145, 239–247 (2007)

    Article  Google Scholar 

  40. Hindriks, R., et al.: LFP and CSD phase-patterns: a forward modeling study. Front. Neural. Circuits 10, 51 (2016)

    Article  Google Scholar 

  41. Velichkovskiy, B.M., Kovalchuk, M.V., Ushakov, V.L., Sharaev, M.G.: The study of consciousness by natural science methods: on a possible role of wave-like integration processes. RFBR J. N 3(91), 61–69 (2016)

    Google Scholar 

Download references

Acknowledgements

The work was supported by the NRC “Kurchatov Institute” grant to the last author (№ 1378 from 23.08.2017) on studying the multilevel cognitive organization of the human brain for brain-computer interfaces, in part by RFBR Grants 17-04-02211 to the first author (traveling waves in the human brain) and by ofi-m grant 17-29-02518 (the cognitive-effective structures of the human brain). Raw data for this paper are available at https://github.com/BrainTravelingWaves and http://braintw.org/. The authors have no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaly M. Verkhlyutov .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Verkhlyutov, V.M., Balaev, V.V., Ushakov, V.L., Velichkovsky, B.M. (2019). A Novel Methodology for Simulation of EEG Traveling Waves on the Folding Surface of the Human Cerebral Cortex. In: Kryzhanovsky, B., Dunin-Barkowski, W., Redko, V., Tiumentsev, Y. (eds) Advances in Neural Computation, Machine Learning, and Cognitive Research II. NEUROINFORMATICS 2018. Studies in Computational Intelligence, vol 799. Springer, Cham. https://doi.org/10.1007/978-3-030-01328-8_4

Download citation

Publish with us

Policies and ethics