Skip to main content

Gathering in the Plane of Location-Aware Robots in the Presence of Spies

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11085))

Abstract

A set of mobile robots (represented as points) is distributed in the Cartesian plane. The collection contains an unknown subset of byzantine robots which are indistinguishable from the reliable ones. The reliable robots need to gather, i.e., arrive to a configuration in which at the same time, all of them occupy the same point on the plane. The robots are equipped with GPS devices and at the beginning of the gathering process they communicate the Cartesian coordinates of their respective positions to the central authority. On the basis of this information, without the knowledge of which robots are faulty, the central authority designs a trajectory for every robot. The central authority aims to provide the trajectories which result in the shortest possible gathering time of the healthy robots. The efficiency of a gathering strategy is measured by its competitive ratio, i.e., the maximal ratio between the time required for gathering achieved by the given trajectories and the optimal time required for gathering in the offline case, i.e., when the faulty robots are known to the central authority in advance. The role of the byzantine robots, controlled by the adversary, is to act so that the gathering is delayed and the resulting competitive ratio is maximized.

The objective of our paper is to propose efficient algorithms when the central authority is aware of an upper bound on the number of byzantine robots. We give optimal algorithms for collections of robots known to contain at most one faulty robot. When the proportion of byzantine robots is known to be less than one half or one third, we provide algorithms with small constant competitive ratios. We also propose algorithms with bounded competitive ratio in the case where the proportion of faulty robots is arbitrary.

J. Czyzowicz and E. Kranakis—Research supported in part by NSERC Discovery grant.

R. Killick—Research supported by OGS scholarship.

Due to space limitations all missing proofs can be found in the report [19].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    When \(F>1\) there are cases when this is not true.

  2. 2.

    The complexity of the algorithm is entirely due to the determination of \(d_{\epsilon }\).

References

  1. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. SIAM J. Comput. 36(1), 56–82 (2006)

    Article  MathSciNet  Google Scholar 

  2. Alpern, S.: The rendezvous search problem. SIAM J. Control. Optim. 33(3), 673–683 (1995)

    Article  MathSciNet  Google Scholar 

  3. Alpern, S.: Rendezvous search: a personal perspective. Oper. Res. 50(5), 772–795 (2002)

    Article  MathSciNet  Google Scholar 

  4. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous, vol. 55. Springer, New York (2003). https://doi.org/10.1007/b100809

    Book  MATH  Google Scholar 

  5. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77974-2

    Book  MATH  Google Scholar 

  6. Blum, M., Floyd, R.W., Pratt, V., Rivest, R.L., Tarjan, R.E.: Time bounds for selection. J. Comput. Syst. Sci. 7(4), 448–461 (1973)

    Article  MathSciNet  Google Scholar 

  7. Chrystal, G.: On the problem to construct the minimum circle enclosing n given points in the plane. Proc. Edinb. Math. Soc. 3, 30–33 (1885)

    Article  Google Scholar 

  8. Chuangpishit, H., Czyzowicz, J., Kranakis, E., Krizanc, D.: Rendezvous on a line of faulty, location-aware robots. In: Proceedings 13th International Symposium on Algorithms and Experiments for Wireless Networks, Vienna, Austria. LNCS. Springer (2017)

    Google Scholar 

  9. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by mobile robots: gathering. SIAM J. Comput. 41(4), 829–879 (2012)

    Article  MathSciNet  Google Scholar 

  10. Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in asynchronous robot systems. SIAM J. Comput. 34(6), 1516–1528 (2005)

    Article  MathSciNet  Google Scholar 

  11. Cohen, R., Peleg, D.: Convergence of autonomous mobile robots with inaccurate sensors and movements. SIAM J. Comput. 38(1), 276–302 (2008)

    Article  MathSciNet  Google Scholar 

  12. Collins, A., Czyzowicz, J., Gąsieniec, L., Kosowski, A., Martin, R.: Synchronous rendezvous for location-aware agents. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 447–459. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24100-0_42

    Chapter  Google Scholar 

  13. Collins, A., Czyzowicz, J., Gąsieniec, L., Labourel, A.: Tell me where I am so I can meet you sooner. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 502–514. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14162-1_42

    Chapter  Google Scholar 

  14. Cord-Landwehr, A., Fischer, M., Jung, D., Meyer auf der Heide, F.: Asymptotically optimal gathering on a grid. In: Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2016, Asilomar State Beach/Pacific Grove, CA, USA, 11–13 July 2016, pp. 301–312. ACM (2016)

    Google Scholar 

  15. Courtieu, P., Rieg, L., Tixeuil, S., Urbain, X.: Certified universal gathering in \(\mathbb{R} ^2\) for oblivious mobile robots. In: Gavoille, C., Ilcinkas, D. (eds.) DISC 2016. LNCS, vol. 9888, pp. 187–200. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53426-7_14

    Chapter  Google Scholar 

  16. Czyzowicz, J., Gasieniec, L., Kosowski, A., Kranakis, E., Krizanc, D., Taleb, N.: When patrolmen become corrupted: monitoring a graph using faulty mobile robots. In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS, vol. 9472, pp. 343–354. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48971-0_30

    Chapter  Google Scholar 

  17. Czyzowicz, J., et al.: Search on a line by byzantine robots. In: 27th International Symposium on Algorithms and Computation, ISAAC 2016, Sydney, Australia, 12–14 December 2016. LNCS, pp. 27:1–27:12. Springer (2016)

    Google Scholar 

  18. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J.: Search on a line with faulty robots. In: Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, PODC 2016, Chicago, IL, USA, 25–28 July 2016, pp. 405–414. ACM (2016)

    Google Scholar 

  19. Czyzowicz, J., Killick, R., Kranakis, E., Krizanc, D., Morale-Ponce, O.: Gathering in the plane of location-aware robots in the presence of spies. arXiv preprint arXiv:1712.02474 (2017)

  20. Das, S., Flocchini, P., Santoro, N., Yamashita, M.: On the computational power of oblivious robots: forming a series of geometric patterns. In: Proceedings of the 29th PODC, Zurich, Switzerland, 25–28 July 2010, pp. 267–276. ACM (2010)

    Google Scholar 

  21. De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asynchronous deterministic rendezvous in graphs. Theor. Comput. Sci. 355(3), 315–326 (2006)

    Article  MathSciNet  Google Scholar 

  22. Dieudonné, Y., Pelc, A., Peleg, D.: Gathering despite mischief. ACM Trans. Algorithms (TALG) 11(1), 1 (2014)

    Article  MathSciNet  Google Scholar 

  23. Edelsbrunner, H.: Algorithms in Combinatorial Geometry, vol. 10. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  24. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous robots with limited visibility. Theor. Comput. Sci. 337(1–3), 147–168 (2005)

    Article  MathSciNet  Google Scholar 

  25. Hromkovič, J., Klasing, R., Monien, B., Peine, R.: Dissemination of information in interconnection networks (broadcasting & gossiping). In: Du, D.Z., Hsu, D.F. (eds.) Combinatorial Network Theory. APOP, vol. 1, pp. 125–212. Springer, Boston (1996). https://doi.org/10.1007/978-1-4757-2491-2_5

    Chapter  Google Scholar 

  26. Izumi, T., Souissi, S., Katayama, Y., Inuzuka, N., Défago, X., Wada, K., Yamashita, M.: The gathering problem for two oblivious robots with unreliable compasses. SIAM J. Comput. 41(1), 26–46 (2012)

    Article  MathSciNet  Google Scholar 

  27. Jadhav, S., Mukhopadhyay, A.: Computing a centerpoint of a finite planar set of points in linear time. Discret. Comput. Geom. 12(3), 291–312 (1994)

    Article  MathSciNet  Google Scholar 

  28. Kranakis, E., Krizanc, D., Rajsbaum, S.: Mobile agent rendezvous: a survey. In: Flocchini, P., Gąsieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 1–9. Springer, Heidelberg (2006). https://doi.org/10.1007/11780823_1

    Chapter  Google Scholar 

  29. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, Burlington (1996)

    MATH  Google Scholar 

  30. Pelc, A.: DISC 2011 invited lecture: deterministic rendezvous in networks: survey of models and results. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 1–15. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24100-0_1

    Chapter  Google Scholar 

  31. Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots. Theor. Comput. Sci. 384(2–3), 222–231 (2007)

    Article  MathSciNet  Google Scholar 

  32. Souissi, S., Défago, X., Yamashita, M.: Gathering asynchronous mobile robots with inaccurate compasses. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 333–349. Springer, Heidelberg (2006). https://doi.org/10.1007/11945529_24

    Chapter  Google Scholar 

  33. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

    Article  MathSciNet  Google Scholar 

  34. Yang, Y., Souissi, S., Défago, X., Takizawa, M.: Fault-tolerant flocking for a group of autonomous mobile robots. J. Syst. Softw. 84(1), 29–36 (2011)

    Article  Google Scholar 

  35. Yu, X., Yung, M.: Agent rendezvous: a dynamic symmetry-breaking problem. In: Meyer, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 610–621. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61440-0_163

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelos Kranakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Czyzowicz, J., Killick, R., Kranakis, E., Krizanc, D., Morale-Ponce, O. (2018). Gathering in the Plane of Location-Aware Robots in the Presence of Spies. In: Lotker, Z., Patt-Shamir, B. (eds) Structural Information and Communication Complexity. SIROCCO 2018. Lecture Notes in Computer Science(), vol 11085. Springer, Cham. https://doi.org/10.1007/978-3-030-01325-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01325-7_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01324-0

  • Online ISBN: 978-3-030-01325-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics