Skip to main content

Abstract

Bone marrow failure (BMF) syndromes can be classified into inherited and acquired. In addition to the classic clinical presentation of inadequate hematopoiesis (anemia, leukopenia, and thrombocytopenia), which can initially be isolated cytopenias and then progress to marrow aplasia, inherited bone marrow failure syndromes can present with characteristic non-hematologic clinical findings. Patients can be diagnosed shortly after birth or the diagnosis can be delayed into adulthood. BMF syndromes can be premalignant conditions that can progress into myelodysplastic syndrome and/or acute leukemia. Some patients are at higher risk of solid tumors. Early diagnosis, prompt management of complications (infections, bleeding, organ failures), and early referral for hematopoietic stem cell transplantation can be associated with improved outcome. In this chapter we will discuss the most common bone marrow failure syndromes, acquired idiopathic aplastic anemia, Fanconi anemia, Diamond-Blackfan anemia, dyskeratosis congenita, and Shwachman-Bodian-Diamond syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Montane E, Ibanez L, Vidal X, et al. Epidemiology of aplastic anemia: a prospective multicenter study. Haematologica. 2008;93(4):518–23.

    Article  PubMed  Google Scholar 

  2. Howard SC, Naidu PE, Hu XJ, et al. Natural history of moderate aplastic anemia in children. Pediatr Blood Cancer. 2004;43(5):545–51.

    Article  PubMed  Google Scholar 

  3. Camitta BM, Rappeport JM, Parkman R, Nathan DG. Selection of patients for bone marrow transplantation in severe aplastic anemia. Blood. 1975;45(3):355–63.

    CAS  PubMed  Google Scholar 

  4. Bacigalupo A, Hows J, Gluckman E, et al. Bone marrow transplantation (BMT) versus immunosuppression for the treatment of severe aplastic anaemia (SAA): a report of the EBMT SAA working party. Br J Haematol. 1988;70(2):177–82.

    Article  CAS  PubMed  Google Scholar 

  5. Khatib Z, Wilimas J, Wang W. Outcome of moderate aplastic anemia in children. Am J Pediatr Hematol Oncol. 1994;16(1):80–5.

    CAS  PubMed  Google Scholar 

  6. Hartung HD, Olson TS, Bessler M. Acquired aplastic anemia in children. Pediatr Clin N Am. 2013;60(6):1311–36.

    Article  Google Scholar 

  7. Young NS, Scheinberg P, Calado RT. Aplastic anemia. Curr Opin Hematol. 2008;15(3):162–8.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Young NS, Calado RT, Scheinberg P. Current concepts in the pathophysiology and treatment of aplastic anemia. Blood. 2006;108(8):2509–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Knospe WH, Crosby WH. Aplastic anaemia: a disorder of the bone-marrow sinusoidal microcirculation rather than stem-cell failure? Lancet. 1971;1(7688):20–2.

    Article  CAS  PubMed  Google Scholar 

  10. Locasciulli A, Oneto R, Bacigalupo A, et al. Outcome of patients with acquired aplastic anemia given first line bone marrow transplantation or immunosuppressive treatment in the last decade: a report from the European Group for Blood and Marrow Transplantation (EBMT). Haematologica. 2007;92(1):11–8.

    Article  CAS  PubMed  Google Scholar 

  11. Sutherland DR, Kuek N, Davidson J, et al. Diagnosing PNH with FLAER and multiparameter flow cytometry. Cytometry B Clin Cytom. 2007;72(3):167–77.

    Article  PubMed  Google Scholar 

  12. Valdez JM, Scheinberg P, Nunez O, Wu CO, Young NS, Walsh TJ. Decreased infection-related mortality and improved survival in severe aplastic anemia in the past two decades. Clin Infect Dis. 2011;52(6):726–35.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Scheinberg P, Nunez O, Weinstein B, et al. Horse versus rabbit antithymocyte globulin in acquired aplastic anemia. N Engl J Med. 2011;365(5):430–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tichelli A, Schrezenmeier H, Socie G, et al. A randomized controlled study in patients with newly diagnosed severe aplastic anemia receiving antithymocyte globulin (ATG), cyclosporine, with or without G-CSF: a study of the SAA Working Party of the European Group for Blood and Marrow Transplantation. Blood. 2011;117(17):4434–41.

    Article  CAS  PubMed  Google Scholar 

  15. Weinberger M, Elattar I, Marshall D, et al. Patterns of infection in patients with aplastic anemia and the emergence of Aspergillus as a major cause of death. Medicine (Baltimore). 1992;71(1):24–43.

    Article  CAS  Google Scholar 

  16. Hochsmann B, Moicean A, Risitano A, Ljungman P, Schrezenmeier H. Supportive care in severe and very severe aplastic anemia. Bone Marrow Transplant. 2013;48(2):168–73.

    Article  CAS  PubMed  Google Scholar 

  17. Ohara A, Kojima S, Hamajima N, et al. Myelodysplastic syndrome and acute myelogenous leukemia as a late clonal complication in children with acquired aplastic anemia. Blood. 1997;90(3):1009–13.

    CAS  PubMed  Google Scholar 

  18. Jeng MR, Naidu PE, Rieman MD, et al. Granulocyte-macrophage colony stimulating factor and immunosuppression in the treatment of pediatric acquired severe aplastic anemia. Pediatr Blood Cancer. 2005;45(2):170–5.

    Article  PubMed  Google Scholar 

  19. Gurion R, Gafter-Gvili A, Paul M, et al. Hematopoietic growth factors in aplastic anemia patients treated with immunosuppressive therapy-systematic review and meta-analysis. Haematologica. 2009;94(5):712–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Quillen K, Wong E, Scheinberg P, et al. Granulocyte transfusions in severe aplastic anemia: an eleven-year experience. Haematologica. 2009;94(12):1661–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Champlin RE, Horowitz MM, van Bekkum DW, et al. Graft failure following bone marrow transplantation for severe aplastic anemia: risk factors and treatment results. Blood. 1989;73(2):606–13.

    CAS  PubMed  Google Scholar 

  22. Marsh JC, Ball SE, Cavenagh J, et al. Guidelines for the diagnosis and management of aplastic anaemia. Br J Haematol. 2009;147(1):43–70.

    Article  CAS  PubMed  Google Scholar 

  23. Schrezenmeier H, Seifried E. Buffy-coat-derived pooled platelet concentrates and apheresis platelet concentrates: which product type should be preferred? Vox Sang. 2010;99(1):1–15.

    Article  CAS  PubMed  Google Scholar 

  24. Laundy GJ, Bradley BA, Rees BM, Younie M, Hows JM. Incidence and specificity of HLA antibodies in multitransfused patients with acquired aplastic anemia. Transfusion. 2004;44(6):814–25.

    Article  CAS  PubMed  Google Scholar 

  25. Townsley DM, Scheinberg P, Winkler T, et al. Eltrombopag added to standard immunosuppression for aplastic anemia. N Engl J Med. 2017;376(16):1540–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Welte M. Erythrocyte transfusion: update of the guidelines “therapy with blood components and plasma derivatives”. Anaesthesist. 2009;58(11):1150–8.

    Article  CAS  PubMed  Google Scholar 

  27. Marsh J, Socie G, Tichelli A, et al. Should irradiated blood products be given routinely to all patients with aplastic anaemia undergoing immunosuppressive therapy with antithymocyte globulin (ATG)? A survey from the European Group for Blood and Marrow Transplantation Severe Aplastic Anaemia Working Party. Br J Haematol. 2010;150(3):377–9.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nichols WG, Price TH, Gooley T, Corey L, Boeckh M. Transfusion-transmitted cytomegalovirus infection after receipt of leukoreduced blood products. Blood. 2003;101(10):4195–200.

    Article  CAS  PubMed  Google Scholar 

  29. Vamvakas EC. Is white blood cell reduction equivalent to antibody screening in preventing transmission of cytomegalovirus by transfusion? A review of the literature and meta-analysis. Transfus Med Rev. 2005;19(3):181–99.

    Article  PubMed  Google Scholar 

  30. Bielory L, Wright R, Nienhuis AW, Young NS, Kaliner MA. Antithymocyte globulin hypersensitivity in bone marrow failure patients. JAMA. 1988;260(21):3164–7.

    Article  CAS  PubMed  Google Scholar 

  31. Yoshida N, Kobayashi R, Yabe H, et al. First-line treatment for severe aplastic anemia in children: bone marrow transplantation from a matched family donor versus immunosuppressive therapy. Haematologica. 2014;99(12):1784–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Bacigalupo A, Brand R, Oneto R, et al. Treatment of acquired severe aplastic anemia: bone marrow transplantation compared with immunosuppressive therapy--The European Group for Blood and Marrow Transplantation experience. Semin Hematol. 2000;37(1):69–80.

    Article  CAS  PubMed  Google Scholar 

  33. Bacigalupo A. How I treat acquired aplastic anemia. Blood. 2017;129(11):1428–36.

    Article  CAS  PubMed  Google Scholar 

  34. Samarasinghe S, Steward C, Hiwarkar P, et al. Excellent outcome of matched unrelated donor transplantation in paediatric aplastic anaemia following failure with immunosuppressive therapy: a United Kingdom multicentre retrospective experience. Br J Haematol. 2012;157(3):339–46.

    Article  CAS  PubMed  Google Scholar 

  35. Pagliuca S, Peffault de Latour R, Volt F, et al. Long-term outcomes of cord blood transplantation from an HLA-identical sibling for patients with bone marrow failure syndromes: a report from eurocord, cord blood committee and severe aplastic anemia Working Party of the European Society for Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2017;23(11):1939–48.

    Article  PubMed  Google Scholar 

  36. Kosaka Y, Yagasaki H, Sano K, et al. Prospective multicenter trial comparing repeated immunosuppressive therapy with stem-cell transplantation from an alternative donor as second-line treatment for children with severe and very severe aplastic anemia. Blood. 2008;111(3):1054–9.

    Article  CAS  PubMed  Google Scholar 

  37. Cheng Y, Xu Z, Zhang Y, et al. First-line choice for severe aplastic anemia in children: transplantation from a haploidentical donor vs immunosuppressive therapy. Clin Transpl. 2017 PMID: 29297952

    Google Scholar 

  38. Fanconi G. Familiaere infantile pernizisaartige anaemie. Jahrbuch Kinderheild. 1927;117:257–80.

    Google Scholar 

  39. Triemstra J, Rhodes L, Waggoner DJ, Onel K. A review of Fanconi anemia for the practicing pediatrician. Pediatr Ann. 2015;44(10):444–5, 448, 450, 452

    Article  PubMed  Google Scholar 

  40. Soulier J, Leblanc T, Larghero J, et al. Detection of somatic mosaicism and classification of Fanconi anemia patients by analysis of the FA/BRCA pathway. Blood. 2005;105(3):1329–36.

    Article  CAS  PubMed  Google Scholar 

  41. Gregory JJ Jr, Wagner JE, Verlander PC, et al. Somatic mosaicism in Fanconi anemia: evidence of genotypic reversion in lymphohematopoietic stem cells. Proc Natl Acad Sci U S A. 2001;98(5):2532–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fargo JH, Rochowski A, Giri N, Savage SA, Olson SB, Alter BP. Comparison of chromosome breakage in non-mosaic and mosaic patients with Fanconi anemia, relatives, and patients with other inherited bone marrow failure syndromes. Cytogenet Genome Res. 2014;144(1):15–27.

    Article  PubMed  Google Scholar 

  43. Kutler DI, Singh B, Satagopan J, et al. A 20-year perspective on the International Fanconi Anemia Registry (IFAR). Blood. 2003;101(4):1249–56.

    Article  CAS  PubMed  Google Scholar 

  44. Peffault de Latour R, Soulier J. How I treat MDS and AML in Fanconi anemia. Blood. 2016;127(24):2971–9.

    Article  CAS  PubMed  Google Scholar 

  45. Diamond LK, Blackfan KD. Hypoplastic anemia. Am J Dis Child. 1938;56:464.

    Google Scholar 

  46. Diamond LK, Allen DM, Magill FB. Congenital (erythroid) hypoplastic anemia. A 25-year study. Am J Dis Child. 1961;102:403–15.

    Article  CAS  PubMed  Google Scholar 

  47. Vlachos A, Muir E. How I treat Diamond-Blackfan anemia. Blood. 2010;116(19):3715–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. West AH, Churpek JE. Old and new tools in the clinical diagnosis of inherited bone marrow failure syndromes. Hematology Am Soc Hematol Educ Program. 2017;2017(1):79–87.

    PubMed  PubMed Central  Google Scholar 

  49. Vlachos A, Ball S, Dahl N, et al. Diagnosing and treating Diamond Blackfan anaemia: results of an international clinical consensus conference. Br J Haematol. 2008;142(6):859–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wilson DB, Link DC, Mason PJ, Bessler M. Inherited bone marrow failure syndromes in adolescents and young adults. Ann Med. 2014;46(6):353–63.

    Article  PubMed  Google Scholar 

  51. Clinton C, Gazda HT. Diamond-Blackfan Anemia. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews((R)). Seattle: University of Washington; 1993.

    Google Scholar 

  52. Fargo JH, Kratz CP, Giri N, et al. Erythrocyte adenosine deaminase: diagnostic value for Diamond-Blackfan anaemia. Br J Haematol. 2013;160(4):547–54.

    Article  CAS  PubMed  Google Scholar 

  53. Narla A, Ebert BL. Ribosomopathies: human disorders of ribosome dysfunction. Blood. 2010;115(16):3196–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McGowan KA, Li JZ, Park CY, et al. Ribosomal mutations cause p53-mediated dark skin and pleiotropic effects. Nat Genet. 2008;40(8):963–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fumagalli S, Di Cara A, Neb-Gulati A, et al. Absence of nucleolar disruption after impairment of 40S ribosome biogenesis reveals an rpL11-translation-dependent mechanism of p53 induction. Nat Cell Biol. 2009;11(4):501–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dutt S, Narla A, Lin K, et al. Haploinsufficiency for ribosomal protein genes causes selective activation of p53 in human erythroid progenitor cells. Blood. 2011;117(9):2567–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Keel SB, Doty RT, Yang Z, et al. A heme export protein is required for red blood cell differentiation and iron homeostasis. Science. 2008;319(5864):825–8.

    Article  CAS  PubMed  Google Scholar 

  58. Lipton JM, Atsidaftos E, Zyskind I, Vlachos A. Improving clinical care and elucidating the pathophysiology of Diamond Blackfan anemia: an update from the Diamond Blackfan Anemia Registry. Pediatr Blood Cancer. 2006;46(5):558–64.

    Article  PubMed  Google Scholar 

  59. Calado RT, Cle DV. Treatment of inherited bone marrow failure syndromes beyond transplantation. Hematology Am Soc Hematol Educ Program. 2017;2017(1):96–101.

    PubMed  PubMed Central  Google Scholar 

  60. Vlachos A, Rosenberg PS, Kang J, Atsidaftos E, Alter BP, Lipton JM. Myelodysplastic syndrome and gastrointestinal carcinomas characterize the cancer risk in Diamond Blackfan anemia: a report from the Diamond Blackfan anemia registry. Blood. 2016;128(122):333.

    Google Scholar 

  61. Vlachos A, Rosenberg PS, Atsidaftos E, Alter BP, Lipton JM. Incidence of neoplasia in Diamond Blackfan anemia: a report from the Diamond Blackfan Anemia Registry. Blood. 2012;119(16):3815–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Alter BP. Inherited bone marrow failure syndromes: considerations pre- and posttransplant. Hematology Am Soc Hematol Educ Program. 2017;2017(1):88–95.

    PubMed  PubMed Central  Google Scholar 

  63. Savage SA, Bertuch AA. The genetics and clinical manifestations of telomere biology disorders. Genet Med. 2010;12(12):753–64.

    Article  PubMed  Google Scholar 

  64. Dokal I. Dyskeratosis congenita in all its forms. Br J Haematol. 2000;110(4):768–79.

    Article  CAS  PubMed  Google Scholar 

  65. Dokal I. Dyskeratosis congenita. Hematology Am Soc Hematol Educ Program. 2011;2011:480–6.

    Article  PubMed  Google Scholar 

  66. Parry EM, Alder JK, Qi X, Chen JJ, Armanios M. Syndrome complex of bone marrow failure and pulmonary fibrosis predicts germline defects in telomerase. Blood. 2011;117(21):5607–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Vulliamy TJ, Marrone A, Knight SW, Walne A, Mason PJ, Dokal I. Mutations in dyskeratosis congenita: their impact on telomere length and the diversity of clinical presentation. Blood. 2006;107(7):2680–5.

    Article  CAS  PubMed  Google Scholar 

  68. Savage SA, Alter BP. The role of telomere biology in bone marrow failure and other disorders. Mech Ageing Dev. 2008;129(1–2):35–47.

    Article  CAS  PubMed  Google Scholar 

  69. Baerlocher GM, Lansdorp PM. Telomere length measurements in leukocyte subsets by automated multicolor flow-FISH. Cytometry A. 2003;55(1):1–6.

    Article  PubMed  CAS  Google Scholar 

  70. Alter BP, Baerlocher GM, Savage SA, et al. Very short telomere length by flow fluorescence in situ hybridization identifies patients with dyskeratosis congenita. Blood. 2007;110(5):1439–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Alter BP, Rosenberg PS, Giri N, Baerlocher GM, Lansdorp PM, Savage SA. Telomere length is associated with disease severity and declines with age in dyskeratosis congenita. Haematologica. 2012;97(3):353–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Khincha PP, Wentzensen IM, Giri N, Alter BP, Savage SA. Response to androgen therapy in patients with dyskeratosis congenita. Br J Haematol. 2014;165(3):349–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Townsley DM, Dumitriu B, Young NS. Danazol treatment for telomere diseases. N Engl J Med. 2016;375(11):1095–6.

    Article  PubMed  Google Scholar 

  74. Al-Rahawan MM, Giri N, Alter BP. Intensive immunosuppression therapy for aplastic anemia associated with dyskeratosis congenita. Int J Hematol. 2006;83(3):275–6.

    Article  CAS  PubMed  Google Scholar 

  75. Dietz AC, Orchard PJ, Baker KS, et al. Disease-specific hematopoietic cell transplantation: nonmyeloablative conditioning regimen for dyskeratosis congenita. Bone Marrow Transplant. 2011;46(1):98–104.

    Article  CAS  PubMed  Google Scholar 

  76. Gadalla SM, Sales-Bonfim C, Carreras J, et al. Outcomes of allogeneic hematopoietic cell transplantation in patients with dyskeratosis congenita. Biol Blood Marrow Transplant. 2013;19(8):1238–43.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Bodian M, Sheldon W, Lightwood R. Congenital hypoplasia of the exocrine pancreas. Acta Paediatr. 1964;53:282–93.

    Article  CAS  Google Scholar 

  78. Shwachman H, Diamond LK, Oski FA, Khaw KT. The syndrome of pancreatic insufficiency and bone marrow dysfunction. J Pediatr. 1964;65:645–63.

    Article  CAS  PubMed  Google Scholar 

  79. Goobie S, Popovic M, Morrison J, et al. Shwachman-Diamond syndrome with exocrine pancreatic dysfunction and bone marrow failure maps to the centromeric region of chromosome 7. Am J Hum Genet. 2001;68(4):1048–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Boocock GR, Morrison JA, Popovic M, et al. Mutations in SBDS are associated with Shwachman-Diamond syndrome. Nat Genet. 2003;33(1):97–101.

    Article  CAS  PubMed  Google Scholar 

  81. Toiviainen-Salo S, Raade M, Durie PR, et al. Magnetic resonance imaging findings of the pancreas in patients with Shwachman-Diamond syndrome and mutations in the SBDS gene. J Pediatr. 2008;152(3):434–6.

    Article  CAS  PubMed  Google Scholar 

  82. Donadieu J, Leblanc T, Bader Meunier B, et al. Analysis of risk factors for myelodysplasias, leukemias and death from infection among patients with congenital neutropenia. Experience of the French Severe Chronic Neutropenia Study Group. Haematologica. 2005;90(1):45–53.

    PubMed  Google Scholar 

  83. Savilahti E, Rapola J. Frequent myocardial lesions in Shwachman's syndrome. Eight fatal cases among 16 Finnish patients. Acta Paediatr Scand. 1984;73(5):642–51.

    Article  CAS  PubMed  Google Scholar 

  84. Burroughs L, Woolfrey A, Shimamura A. Shwachman-Diamond syndrome: a review of the clinical presentation, molecular pathogenesis, diagnosis, and treatment. Hematol Oncol Clin North Am. 2009;23(2):233–48.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Dror Y, Donadieu J, Koglmeier J, et al. Draft consensus guidelines for diagnosis and treatment of Shwachman-Diamond syndrome. Ann N Y Acad Sci. 2011;1242:40–55.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajad Khazal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khazal, S., Galvez Silva, J.R., Thakar, M., Margolis, D. (2019). Bone Marrow Failure. In: Duncan, C., Talano, JA., McArthur, J. (eds) Critical Care of the Pediatric Immunocompromised Hematology/Oncology Patient. Springer, Cham. https://doi.org/10.1007/978-3-030-01322-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01322-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01321-9

  • Online ISBN: 978-3-030-01322-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics