Skip to main content

NUTS for Mixture IRT Models

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 265))

Abstract

The No-U-Turn Sampler (NUTS) is a relatively new Markov chain Monte Carlo (MCMC) algorithm that avoids the random walk behavior that common MCMC algorithms such as Gibbs sampling or Metropolis Hastings usually exhibit. Given the fact that NUTS can efficiently explore the entire space of the target distribution, the sampler converges to high-dimensional target distributions more quickly than other MCMC algorithms and is hence less computational expensive. The focus of this study is on applying NUTS to one of the complex IRT models, specifically the two-parameter mixture IRT (Mix2PL) model, and further to examine its performance in estimating model parameters when sample size, test length, and number of latent classes are manipulated. The results indicate that overall, NUTS performs well in recovering model parameters. However, the recovery of the class membership of individual persons is not satisfactory for the three-class conditions. Findings from this investigation provide empirical evidence on the performance of NUTS in fitting Mix2PL models and suggest that researchers and practitioners in educational and psychological measurement should benefit from using NUTS in estimating parameters of complex IRT models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Batley, R.-M., & Boss, M. W. (1993). The effects on parameter estimation of correlated dimensions and a distribution-restricted trait in a multidimensional item response model. Applied Psychological Measurement, 17(2), 131–141. https://doi.org/10.1177/014662169301700203.

    Article  Google Scholar 

  • Birnbaum, A. (1969). Statistical theory for logistic mental test models with a prior distribution of ability. Journal of Mathematical Psychology, 6(2), 258–276.

    Article  MATH  Google Scholar 

  • Bock, R. D. (1972). Estimating item parameters and latent ability when responses are scored in two or more nominal categories. Psychometrika, 37(1), 29–51.

    Article  MATH  Google Scholar 

  • Bolt, D. M., Cohen, A. S., & Wollack, J. A. (2002). Item parameter estimation under conditions of test speededness: application of a mixture Rasch model with ordinal constraints. Journal of Educational Measurement, 39(4), 331–348.

    Article  Google Scholar 

  • Chang, M. (2017). A comparison of two MCMC algorithms for estimating the 2PL IRT models. Doctoral: Southern Illinois University.

    Google Scholar 

  • Cho, S., Cohen, A., & Kim, S. (2013). Markov chain Monte Carlo estimation of a mixture item response theory model. Journal of Statistical Computation and Simulation, 83(2), 278–306.

    Google Scholar 

  • Choi, Y., Alexeev, N., & Cohen, A. S. (2015). Differential item functioning analysis using a mixture 3-parameter logistic model with a covariate on the TIMSS 2007 mathematics test. International Journal of Testing, 15(3), 239–253. https://doi.org/10.1080/15305058.2015.1007241.

    Article  Google Scholar 

  • Cohen, A. S., & Bolt, D. M. (2005). A mixture model analysis of differential item functioning. Journal of Educational Measurement Summer, 42(2), 133–148.

    Article  Google Scholar 

  • De Ayala, R. J., Kim, S. H., Stapleton, L. M., & Dayton, C. M. (2002). Differential item functioning: a mixture distribution conceptualization. International Journal of Testing, 2(3&4), 243–276.

    Article  Google Scholar 

  • de la Torre, J., Stark, S., & Chernyshenko, O. S. (2006). Markov chain Monte Carlo estimation of item parameters for the generalized graded unfolding model. Applied Psychological Measurement, 30(3), 216–232. https://doi.org/10.1177/0146621605282772.

    Article  MathSciNet  Google Scholar 

  • Duane, S., Kennedy, A., Pendleton, B. J., & Roweth, D. (1987). Hybrid Monte Carlo. Physics Letters B, 195, 216–222. https://doi.org/10.1016/0370-2693(87)91197-X.

    Article  MathSciNet  Google Scholar 

  • Finch, W. H., & French, B. F. (2012). Parameter estimation with mixture item response theory models: A Monte Carlo comparison of maximum likelihood and Bayesian methods. Journal of Modern Applied Statistical Methods, 11(1), 167–178.

    Article  Google Scholar 

  • Gelfand, A. E., & Sahu, S. K. (1999). Identifiability, improper priors, and Gibbs sampling for generalized linear models. JASA, 94(445), 247–253. https://doi.org/10.2307/2669699.

    Article  MathSciNet  MATH  Google Scholar 

  • Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2014). Bayesian data analysis (3rd ed.). Florida: CRC Press.

    MATH  Google Scholar 

  • Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Stat Sci, 7(4), 457–472.

    Article  MATH  Google Scholar 

  • Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6), 721–741. https://doi.org/10.1109/TPAMI.1984.4767596.

    Article  MATH  Google Scholar 

  • Grant, R. L., Furr, D. C., Carpenter, B., & Gelman, A. (2016). Fitting Bayesian item response models in Stata and Stan. The Stata Journal, 17(2), 343–357. https://arxiv.org/abs/1601.03443. Accessed 18 Apr 2018.

  • Harwell, M., Stone, C. A., Hsu, T. C., & Kirisci, L. (1996). Monte Carlo studies in item response theory. Applied Psychological Measurement, 20(2), 101–125. https://doi.org/10.1177/014662169602000201.

  • Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1), 97–109. https://doi.org/10.1093/biomet/57.1.97.

    Article  MathSciNet  MATH  Google Scholar 

  • Hoffman, M. D., & Gelman, A. (2011). The no-U-turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(2), 1593–1624.

    MathSciNet  MATH  Google Scholar 

  • Huang, H. (2016). Mixture random-effect IRT models for controlling extreme response style on rating scales. Frontiers in Psychology, 7. https://doi.org/10.3389/fpsyg.2016.01706.

  • Kang, T., & Cohen, A. S. (2007). IRT model selection methods for dichotomous items. Applied Psychological Measurement, 31(4), 331–358. https://doi.org/10.1177/0146621606292213.

    Article  MathSciNet  Google Scholar 

  • Kim, S.-H. (2007). Some posterior standard deviations in item response theory. Educational and Psychological Measurement, 67(2), 258–279. https://doi.org/10.1177/00131644070670020501.

    Article  MathSciNet  Google Scholar 

  • Li, F., Cohen, A., Kim, S., & Cho, S. (2009). Model selection methods for mixture dichotomous IRT models. Applied Psychological Measurement, 33(5), 353–373. https://doi.org/10.1177/0146621608326422.

  • Lord, F. M. (1980). Applications of item response theory to practical testing problems (2nd ed.). New Jersey: Hillsdale.

    Google Scholar 

  • Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores. Maryland: Addison-Wesley.

    MATH  Google Scholar 

  • Luo, Y., & Jiao, H. (2017). Using the Stan program for Bayesian item response theory. Educational and Psychological Measurement, 1–25. https://doi.org/10.1177/0013164417693666.

  • Maij-de Meij, A. M., Kelderman, H., & van der Flier, H. (2010). Improvement in detection of differential item functioning using a mixture item response theory model. Multivariate Behavioral Research, 45(6), 975–999. https://doi.org/10.1080/00273171.2010.533047.

    Article  MathSciNet  Google Scholar 

  • Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47(2), 149–174.

    Article  MATH  Google Scholar 

  • Metropolis, N., & Ulam, S. (1949). The Monte Carlo method. Journal of the American Statistical Association, 44(247), 335–341.

    Article  MathSciNet  MATH  Google Scholar 

  • Meyer, J. P. (2010). A mixture Rasch model with Item response time components. Applied Psychological Measurement, 34(7), 521–538. https://doi.org/10.1177/0146621609355451.

    Article  Google Scholar 

  • Mroch, A. A., Bolt, D. M., & Wollack, J. A. (2005). A new multi-class mixture Rasch model for test speededness. Paper presented at the Annual Meeting of the National Council on Measurement in Education, Montreal, Quebe, April 2005.

    Google Scholar 

  • Neal, R. M. (1992). An improved acceptance procedure for the hybrid Monte Carlo algorithm. Retrieved from arXiv preprint https://arxiv.org/abs/hep-lat/9208011.

  • Neal, R. M. (2011). MCMC using Hamiltonian dynamics. In S. Brooks, A. Gelman, G. Jones, & X. Meng (Eds.), Handbook of Markov chain Monte Carlo (pp. 113–162). Florida: CRC Press.

    Google Scholar 

  • Novick, M. R. (1966). The axioms and principal results of classical test theory. Journal of Mathematical Psychology, 3(1), 1–18.

    Article  MathSciNet  MATH  Google Scholar 

  • Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests (2nd ed.). Danmark: Danmarks Paedagogiske Institute.

    Google Scholar 

  • Rost, J. (1990). Rasch models in latent classes: An integration of two approaches to item analysis. Applied Psychological Measurement, 14(3), 271–282. https://doi.org/10.1177/014662169001400305.

    Article  MathSciNet  Google Scholar 

  • Samuelsen, K. (2005). Examining differential item functioning from a latent class perspective (Dissertation). University of Maryland.

    Google Scholar 

  • Shea, C. A. (2013). Using a mixture IRT model to understand English learner performance on large-scale assessments (Dissertation). University of Massachusetts.

    Google Scholar 

  • Stan Development Team. (2017). Stan modeling language users guide and reference manual, version 2.17.0. http://mc-stan.org. Accessed 8 Feb 2018.

  • van der Linden, Wd, & Hambleton, R. K. (1997). Handbook of modern item response theory. New York: Springer.

    Book  MATH  Google Scholar 

  • Wollack, J. A., Bolt, D. M., Cohen, A. S., & Lee, Y. S. (2002). Recovery of item parameters in the nominal response model: a comparison of marginal maximum likelihood estimation and Markov chain Monte Carlo estimation. Applied Psychological Measurement, 26(3), 339–352. https://doi.org/10.1177/0146621602026003007.

    Article  MathSciNet  Google Scholar 

  • Wollack, J. A., Cohen, A. S., & Wells, C. S. (2003). A method for maintaining scale stability in the presence of test speededness. Journal of Educational Measurement, 40, 307–330.

    Article  Google Scholar 

  • Wu, X., Sawatzky, R., Hopman, W., Mayo, N., Sajobi, T. T., Liu, J., … Lix, L. M. (2017). Latent variable mixture models to test for differential item functioning: a population-based analysis. Health and Quality of Life Outcomes, 15. https://doi.org/10.1186/s12955-017-0674-0.

  • Zhu, L., Robinson, S. E., & Torenvlied, R. (2015). A Bayesian approach to measurement bias in networking studies. The American Review of Public Administration, 45(5), 542–564. https://doi.org/10.1177/0275074014524299.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rehab Al Hakmani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Al Hakmani, R., Sheng, Y. (2019). NUTS for Mixture IRT Models. In: Wiberg, M., Culpepper, S., Janssen, R., González, J., Molenaar, D. (eds) Quantitative Psychology. IMPS IMPS 2017 2018. Springer Proceedings in Mathematics & Statistics, vol 265. Springer, Cham. https://doi.org/10.1007/978-3-030-01310-3_3

Download citation

Publish with us

Policies and ethics