Skip to main content

A Copula Model for Residual Dependency in DINA Model

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 265))

Abstract

Cognitive diagnosis models (CDMs) have been received the increasing attention by educational and psychological assessment. In practice, most CDMs are not robust to violations of local item independence. Many approaches have been proposed to deal with the local item dependence (LID), such as conditioning on other responses and additional random effects (Hansen In Hierarchical item response models for cognitive diagnosis. University of California, LA, 2013); however, these have some drawbacks, such as non-reproducibility of marginal probabilities and interpretation problem. (Braeken et al. In Psychometrika 72(3): 393–411 2007) introduced a new class of marginal models that makes use of copula functions to capture the residual dependence in item response models. In this paper, we applied the copula methodology to model the item dependencies in DINA model. It is shown that the proposed copula model could overcome some of the dependency problems in CDMs, and the estimated model parameters recovered well through simulations. Furthermore, we have extended the R package CDM to fit the proposed copula DINA model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bradow, E. T., Wainer, H., & Wang, X, A Bayesian random effects model for testlets. Psychometrika 64, 153-168(1999)

    Google Scholar 

  • Braeken, J., Tuerlinckx, F., & De Boeck, P. (2007). Copula Functions for Residual Dependency. Psychometrika, 72(3), 393–411.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, Y., Culpepper, S. A., Chen, Y., & Douglas, J. (2018). Bayesian Estimation of the DINA Q matrix. Psychometrika, 83, 89–108.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, Y., Liu, J., Xu, G., & Ying, Z. (2015). Statistical analysis of Q-matrix based diagnostic classification models. Journal of the American Statistical Association, 110, 850–866.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, J., & de la Torre, J., & Zhang, Z.,. (2013). Relative and absolute fit evaluation in cognitive diagnosis modeling. Journal of Educational Measurement, 50, 123–140.

    Google Scholar 

  • Culpepper, S. A., & Chen, Y. (2018). Development and Application of an Exploratory Reduced Reparameterized Unified Model. Journal of Educational and Behavioral Statistics,. https://doi.org/10.3102/1076998618791306.

    Article  Google Scholar 

  • de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76, 179–199.

    Article  MathSciNet  MATH  Google Scholar 

  • Dempster, A.P., Laird, N.M. and Rubin, D.B., Maximum likelihood wiih incomplete data via the EM algorithm. Journal of the Royal Statistical Society 39, 1-38. Series B (1977)

    Google Scholar 

  • Hansen, M., Hierarchical item response models for cognitive diagnosis. Unpublished doctoral dissertation, University of California, LA (2013)

    Google Scholar 

  • Henson, R. A., Templin, J. L., & Willse, J. T. (2009). Defining a family of cognitive diagnosis models using log-linear models with latent variables. Psychometrika, 74, 191–210.

    Article  MathSciNet  MATH  Google Scholar 

  • Joe, H., & Xu, J. (1996). The Estimation Method of Inference Functions for Margins for Multivariate Models, Technical Report 166. Department of Statistics: University of British Columbia.

    Google Scholar 

  • Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25, 258–272.

    Article  MathSciNet  Google Scholar 

  • Maydeu-Olivares, A., & Coffman, D. L. (2006). Random intercept item factor analysis. Psychological Methods, 11, 344–362.

    Article  Google Scholar 

  • Nelsen RB, An Introduction to Copulas(Springer-Verlag, New York, 2006)

    Google Scholar 

  • Sklar, A. W. (1959). Fonctions de répartition àn dimension et leurs marges. Publications de lInstitut de Statistique de lUniversitéde Paris, 8, 229–231.

    MATH  Google Scholar 

  • von Davier, M. (2008). A general diagnostic model applied to language testing data. British Journal of Mathematical and Statistical Psychology, 61, 287–307.

    Article  MathSciNet  Google Scholar 

  • Xu, G., & Shang, Z. (2018). Identifying latent structures in restricted latent class models. Journal of the American Statistical Association, 113, 1284–1295.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihui Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fu, Z., Su, YH., Tao, J. (2019). A Copula Model for Residual Dependency in DINA Model. In: Wiberg, M., Culpepper, S., Janssen, R., González, J., Molenaar, D. (eds) Quantitative Psychology. IMPS IMPS 2017 2018. Springer Proceedings in Mathematics & Statistics, vol 265. Springer, Cham. https://doi.org/10.1007/978-3-030-01310-3_14

Download citation

Publish with us

Policies and ethics