Corneal Regeneration: Use of Extracorneal Stem Cells

  • Christian Claude Lachaud
  • Abdelkrim Hmadcha
  • Bernat SoriaEmail author
Part of the Essentials in Ophthalmology book series (ESSENTIALS)


Huge interest is focussed on promoting corneal tissue regeneration or creating artificial corneal tissue equivalents with stem cells (SCs), with a particular emphasis with SCs of extracorneal origin. In this way, Nishida et al. reported in 2004 the successful corneal epithelium regeneration of patients with limbal SC deficiency after the transplantation of an ex vivo cultivated oral mucosa sheet autograft. Since then, a growing list of stem and/or progenitor cells from extracorneal tissues has demonstrated promising results in preclinical models of corneal injury. With highest potential to bioengineer functional corneal epithelium, stroma and endothelium tissues are found embryonic and induced pluripotent SCs. On the other hand, discarded postpartum tissues (placenta, amniotic membrane and umbilical cord) and adult tissues also represent other promising extracorneal sources from where obtaining lineage committed stem and/or progenitor cells with specific potential to repair corneal tissues. Although somatic postnatal stem/progenitor cells are endowed with lower differentiation potential than pluripotent SCs, their applications for tissue engineering of corneal tissue equivalents appear much more attainable in the short term. This chapter gives an overview of the different types of extracorneal SCs that have been used for corneal epithelium, stromal and endothelium regeneration and also their applications.


Stem cells Pluripotent stem cells Multipotent stem cells Corneal regeneration Corneal equivalent Cells transplantation Limbal stem cell deficiency Ophthalmology Regenerative medicine Tissue engineering 



Authors are supported by the nonprofit Fundación Progreso y Salud, Consejería de Salud, Junta de Andalucía; FEDER cofounded grants from Instituto de Salud Carlos III and the Ministry of Economy, Industry and Competitiveness (Red TerCel: RD12/0019/0028 and RD16/00259; CIBERDEM: CB07/08/0006; PI14/01015, PI16/00259, PI17/02104 and CD16/00118); and Junta de Andalucía (PAI-BIO311, CTS-576, CTS 11-727, PI-0109-2014, PI0007/2016 and PI0272/2017). CIBERDEM is an initiative of the Instituto de Salud Carlos III.

Competing Interests

The authors declare no conflict of interest.

Informed Consent

No human studies were carried out by the authors for this article.

Animal Studies

No animal studies were carried out by the authors for this article.


  1. 1.
    Olson JL, Atala A, Yoo JJ. Tissue engineering: current strategies and future directions. Chonnam Med J. 2011;47(1):1–13. Epub 2011/11/24.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Lin ZN, Chen J, Cui HP. Characteristics of corneal dystrophies: a review from clinical, histological and genetic perspectives. Int J Ophthalmol. 2016;9(6):904–13. Epub 2016/07/02.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Klintworth GK. Corneal dystrophies. Orphanet J Rare Dis. 2009;4:7. Epub 2009/02/25.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Ito K. Metabolism and the control of cell fate decisions and stem cell renewal. Annu Rev Cell Dev Biol. 2016;32:399–409. Epub 2016/08/03.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Januschke J, Nathke I. Stem cell decisions: a twist of fate or a niche market? Semin Cell Dev Biol. 2014;34:116–23. Epub 2014/03/13.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Hmadcha A, Dominguez-Bendala J, Wakeman J, Arredouani M, Soria B. The immune boundaries for stem cell based therapies: problems and prospective solutions. J Cell Mol Med. 2009;13(8A):1464–75. Epub 2009/07/09.CrossRefGoogle Scholar
  7. 7.
    Tweedell KS. The adaptability of somatic stem cells: a review. J Stem Cells Regen Med. 2017;13(1):3–13. Epub 2017/07/08.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Hombach-Klonisch S, Panigrahi S, Rashedi I, Seifert A, Alberti E, Pocar P, et al. Adult stem cells and their trans-differentiation potential--perspectives and therapeutic applications. J Mol Med (Berl). 2008;86(12):1301–14. Epub 2008/07/17.CrossRefGoogle Scholar
  9. 9.
    Jadalannagari S, Aljitawi OS. Ectodermal differentiation of Wharton's jelly mesenchymal stem cells for tissue engineering and regenerative medicine applications. Tissue Eng Part B Rev. 2015;21(3):314–22. Epub 2014/12/18.PubMedCrossRefGoogle Scholar
  10. 10.
    Pellegrini G, Rama P, Mavilio F, De Luca M. Epithelial stem cells in corneal regeneration and epidermal gene therapy. J Pathol. 2009;217(2):217–28. Epub 2008/10/16PubMedCrossRefGoogle Scholar
  11. 11.
    Harkin DG, Foyn L, Bray LJ, Sutherland AJ, Li FJ, Cronin BG. Concise reviews: can mesenchymal stromal cells differentiate into corneal cells? A systematic review of published data. Stem Cells. 2015;33(3):785–91. Epub 2014/11/18.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Yang X, Moldovan NI, Zhao Q, Mi S, Zhou Z, Chen D, et al. Reconstruction of damaged cornea by autologous transplantation of epidermal adult stem cells. Mol Vis. 2008;14:1064–70. Epub 2008/06/17.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Blazejewska EA, Schlotzer-Schrehardt U, Zenkel M, Bachmann B, Chankiewitz E, Jacobi C, et al. Corneal limbal microenvironment can induce transdifferentiation of hair follicle stem cells into corneal epithelial-like cells. Stem Cells. 2009;27(3):642–52. Epub 2008/12/17.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Inatomi T, Nakamura T, Koizumi N, Sotozono C, Yokoi N, Kinoshita S. Midterm results on ocular surface reconstruction using cultivated autologous oral mucosal epithelial transplantation. Am J Ophthalmol. 2006;141(2):267–75. Epub 2006/02/07.PubMedCrossRefGoogle Scholar
  15. 15.
    Shao C, Fu Y, Lu W, Fan X. Bone marrow-derived endothelial progenitor cells: a promising therapeutic alternative for corneal endothelial dysfunction. Cells Tissues Organs. 2011;193(4):253–63. Epub 2010/10/22.CrossRefGoogle Scholar
  16. 16.
    Shao C, Chen J, Chen P, Zhu M, Yao Q, Gu P, et al. Targeted transplantation of human umbilical cord blood endothelial progenitor cells with immunomagnetic nanoparticles to repair corneal endothelium defect. Stem Cells Dev. 2015;24(6):756–67. Epub 2014/10/16.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Yu L, Ge J, Wang Z, Huang B, Yu K, Long C, et al. The preliminary experimental study of induced differentiation of embryonic stem cells into corneal epithelial cells. Yan ke xue bao = Eye science. 2001;17(3):138–43. Epub 2003/02/06.Google Scholar
  18. 18.
    Wang Z, Ge J, Huang B, Gao Q, Liu B, Wang L, et al. Differentiation of embryonic stem cells into corneal epithelium. Sci China C Life Sci. 2005;48(5):471–80. Epub 2005/12/01.PubMedCrossRefGoogle Scholar
  19. 19.
    Ahmad S, Stewart R, Yung S, Kolli S, Armstrong L, Stojkovic M, et al. Differentiation of human embryonic stem cells into corneal epithelial-like cells by in vitro replication of the corneal epithelial stem cell niche. Stem Cells. 2007;25(5):1145–55. Epub 2007/01/27.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Ueno H, Kurokawa MS, Kayama M, Homma R, Kumagai Y, Masuda C, et al. Experimental transplantation of corneal epithelium-like cells induced by Pax6 gene transfection of mouse embryonic stem cells. Cornea. 2007;26(10):1220–7. Epub 2007/11/29.PubMedCrossRefGoogle Scholar
  21. 21.
    Kumagai Y, Kurokawa MS, Ueno H, Kayama M, Tsubota K, Nakatsuji N, et al. Induction of corneal epithelium-like cells from cynomolgus monkey embryonic stem cells and their experimental transplantation to damaged cornea. Cornea. 2010;29(4):432–8. Epub 2010/02/19.PubMedCrossRefGoogle Scholar
  22. 22.
    Hanson C, Hardarson T, Ellerstrom C, Nordberg M, Caisander G, Rao M, et al. Transplantation of human embryonic stem cells onto a partially wounded human cornea in vitro. Acta Ophthalmol. 2013;91(2):127–30. Epub 2012/01/28.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Zhu J, Zhang K, Sun Y, Gao X, Li Y, Chen Z, et al. Reconstruction of functional ocular surface by acellular porcine cornea matrix scaffold and limbal stem cells derived from human embryonic stem cells. Tissue Eng Part A. 2013;19(21–22):2412–25. Epub 2013/05/17.PubMedCrossRefGoogle Scholar
  24. 24.
    Zhang C, Du L, Pang K, Wu X. Differentiation of human embryonic stem cells into corneal epithelial progenitor cells under defined conditions. PLoS One. 2017;12(8):e0183303. Epub 2017/08/17.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Hayashi R, Ishikawa Y, Ito M, Kageyama T, Takashiba K, Fujioka T, et al. Generation of corneal epithelial cells from induced pluripotent stem cells derived from human dermal fibroblast and corneal limbal epithelium. PLoS One. 2012;7(9):e45435. Epub 2012/10/03.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Yu D, Chen M, Sun X, Ge J. Differentiation of mouse induced pluripotent stem cells into corneal epithelial-like cells. Cell Biol Int. 2013;37(1):87–94. Epub 2013/01/23.PubMedCrossRefGoogle Scholar
  27. 27.
    Mikhailova A, Ilmarinen T, Uusitalo H, Skottman H. Small-molecule induction promotes corneal epithelial cell differentiation from human induced pluripotent stem cells. Stem Cell Rep. 2014;2(2):219–31. Epub 2014/02/15.CrossRefGoogle Scholar
  28. 28.
    Cieslar-Pobuda A, Rafat M, Knoflach V, Skonieczna M, Hudecki A, Malecki A, et al. Human induced pluripotent stem cell differentiation and direct transdifferentiation into corneal epithelial-like cells. Oncotarget. 2016;7(27):42314–29. Epub 2016/06/09.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Nakamura T, Endo K, Cooper LJ, Fullwood NJ, Tanifuji N, Tsuzuki M, et al. The successful culture and autologous transplantation of rabbit oral mucosal epithelial cells on amniotic membrane. Invest Ophthalmol Vis Sci. 2003;44(1):106–16. Epub 2002/12/31.PubMedCrossRefGoogle Scholar
  30. 30.
    Nishida K, Yamato M, Hayashida Y, Watanabe K, Yamamoto K, Adachi E, et al. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med. 2004;351(12):1187–96. Epub 2004/09/17.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Inatomi T, Nakamura T, Kojyo M, Koizumi N, Sotozono C, Kinoshita S. Ocular surface reconstruction with combination of cultivated autologous oral mucosal epithelial transplantation and penetrating keratoplasty. Am J Ophthalmol. 2006;142(5):757–64. Epub 2006/09/23.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Ilmarinen T, Laine J, Juuti-Uusitalo K, Numminen J, Seppanen-Suuronen R, Uusitalo H, et al. Towards a defined, serum- and feeder-free culture of stratified human oral mucosal epithelium for ocular surface reconstruction. Acta Ophthalmol. 2013;91(8):744–50. Epub 2012/09/12.PubMedCrossRefGoogle Scholar
  33. 33.
    Meyer-Blazejewska EA, Call MK, Yamanaka O, Liu H, Schlotzer-Schrehardt U, Kruse FE, et al. From hair to cornea: toward the therapeutic use of hair follicle-derived stem cells in the treatment of limbal stem cell deficiency. Stem Cells. 2011;29(1):57–66. Epub 2010/10/20.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    He YG, Alizadeh H, Kinoshita K, McCulley JP. Experimental transplantation of cultured human limbal and amniotic epithelial cells onto the corneal surface. Cornea. 1999;18(5):570–9. Epub 1999/09/16.PubMedCrossRefGoogle Scholar
  35. 35.
    Yao M, Chen J, Yang XX, Zhang XL, Ji QS, Zhou Q, et al. Differentiation of human amniotic epithelial cells into corneal epithelial-like cells in vitro. Int J Ophthalmol. 2013;6(5):564–72. Epub 2013/11/07.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Zhou Q, Liu XY, Ruan YX, Wang L, Jiang MM, Wu J, et al. Construction of corneal epithelium with human amniotic epithelial cells and repair of limbal deficiency in rabbit models. Hum Cell. 2015;28(1):22–36. Epub 2014/08/20.PubMedCrossRefGoogle Scholar
  37. 37.
    Huang L, Wong YP, Gu H, Cai YJ, Ho Y, Wang CC, et al. Stem cell-like properties of human umbilical cord lining epithelial cells and the potential for epidermal reconstitution. Cytotherapy. 2011;13(2):145–55. Epub 2010/08/26.PubMedCrossRefGoogle Scholar
  38. 38.
    Reza HM, Ng BY, Gimeno FL, Phan TT, Ang LP. Umbilical cord lining stem cells as a novel and promising source for ocular surface regeneration. Stem Cell Rev. 2011;7(4):935–47. Epub 2011/03/25.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Ma Y, Xu Y, Xiao Z, Yang W, Zhang C, Song E, et al. Reconstruction of chemically burned rat corneal surface by bone marrow-derived human mesenchymal stem cells. Stem Cells. 2006;24(2):315–21. Epub 2005/08/20.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Jiang TS, Cai L, Ji WY, Hui YN, Wang YS, Hu D, et al. Reconstruction of the corneal epithelium with induced marrow mesenchymal stem cells in rats. Mol Vis. 2010;16:1304–16. Epub 2010/07/29.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Roddy GW, Oh JY, Lee RH, Bartosh TJ, Ylostalo J, Coble K, et al. Action at a distance: systemically administered adult stem/progenitor cells (MSCs) reduce inflammatory damage to the cornea without engraftment and primarily by secretion of TNF-alpha stimulated gene/protein 6. Stem Cells. 2011;29(10):1572–9. Epub 2011/08/13.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Lan Y, Kodati S, Lee HS, Omoto M, Jin Y, Chauhan SK. Kinetics and function of mesenchymal stem cells in corneal injury. Invest Ophthalmol Vis Sci. 2012;53(7):3638–44. Epub 2012/05/09.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Pinarli FA, Okten G, Beden U, Fisgin T, Kefeli M, Kara N, et al. Keratinocyte growth factor-2 and autologous serum potentiate the regenerative effect of mesenchymal stem cells in cornea damage in rats. Int J Ophthalmol. 2014;7(2):211–9. Epub 2014/05/03.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Rohaina CM, Then KY, Ng AM, Wan Abdul Halim WH, Zahidin AZ, Saim A, et al. Reconstruction of limbal stem cell deficient corneal surface with induced human bone marrow mesenchymal stem cells on amniotic membrane. Transl Res. 2014;163(3):200–10. Epub 2013/11/30.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Holan V, Trosan P, Cejka C, Javorkova E, Zajicova A, Hermankova B, et al. A comparative study of the therapeutic potential of mesenchymal stem cells and Limbal epithelial stem cells for ocular surface reconstruction. Stem Cells Transl Med. 2015;4(9):1052–63. Epub 2015/07/18.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Cejka C, Holan V, Trosan P, Zajicova A, Javorkova E, Cejkova J. The favorable effect of mesenchymal stem cell treatment on the antioxidant protective mechanism in the corneal epithelium and renewal of corneal optical properties changed after alkali burns. Oxidative Med Cell Longev. 2016;2016:5843809. Epub 2016/04/09.CrossRefGoogle Scholar
  47. 47.
    Di G, Du X, Qi X, Zhao X, Duan H, Li S, et al. Mesenchymal stem cells promote diabetic corneal epithelial wound healing through TSG-6-dependent stem cell activation and macrophage switch. Invest Ophthalmol Vis Sci. 2017;58(10):4344–54. Epub 2017/08/16.PubMedCrossRefGoogle Scholar
  48. 48.
    Martinez-Conesa EM, Espel E, Reina M, Casaroli-Marano RP. Characterization of ocular surface epithelial and progenitor cell markers in human adipose stromal cells derived from lipoaspirates. Invest Ophthalmol Vis Sci. 2012;53(1):513–20. Epub 2011/12/27.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Nieto-Miguel T, Galindo S, Reinoso R, Corell A, Martino M, Perez-Simon JA, et al. In vitro simulation of corneal epithelium microenvironment induces a corneal epithelial-like cell phenotype from human adipose tissue mesenchymal stem cells. Curr Eye Res. 2013;38(9):933–44. Epub 2013/06/19.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Galindo S, Herreras JM, Lopez-Paniagua M, Rey E, de la Mata A, Plata-Cordero M, et al. Therapeutic effect of human adipose tissue-derived mesenchymal stem cells in experimental corneal failure due to Limbal stem cell niche damage. Stem Cells. 2017;35(10):2160–74. Epub 2017/08/02.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Garzon I, Martin-Piedra MA, Alfonso-Rodriguez C, Gonzalez-Andrades M, Carriel V, Martinez-Gomez C, et al. Generation of a biomimetic human artificial cornea model using Wharton's jelly mesenchymal stem cells. Invest Ophthalmol Vis Sci. 2014;55(7):4073–83. Epub 2014/06/08.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Monteiro BG, Serafim RC, Melo GB, Silva MC, Lizier NF, Maranduba CM, et al. Human immature dental pulp stem cells share key characteristic features with limbal stem cells. Cell Prolif. 2009;42(5):587–94. Epub 2009/07/21.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Gomes JA, Geraldes Monteiro B, Melo GB, Smith RL, Cavenaghi Pereira da Silva M, Lizier NF, et al. Corneal reconstruction with tissue-engineered cell sheets composed of human immature dental pulp stem cells. Invest Ophthalmol Vis Sci. 2010;51(3):1408–14. Epub 2009/11/07.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Zhang K, Pang K, Wu X. Isolation and transplantation of corneal endothelial cell-like cells derived from in-vitro-differentiated human embryonic stem cells. Stem Cells Dev. 2014;23(12):1340–54. Epub 2014/02/07.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Zhang C, Du L, Sun P, Shen L, Zhu J, Pang K, et al. Construction of tissue-engineered full-thickness cornea substitute using limbal epithelial cell-like and corneal endothelial cell-like cells derived from human embryonic stem cells. Biomaterials. 2017;124:180–94. Epub 2017/02/16.PubMedCrossRefGoogle Scholar
  56. 56.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76. Epub 2006/08/15.CrossRefGoogle Scholar
  57. 57.
    Cotsarelis G, Sun TT, Lavker RM. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell. 1990;61(7):1329–37. Epub 1990/06/29.PubMedCrossRefGoogle Scholar
  58. 58.
    Taylor G, Lehrer MS, Jensen PJ, Sun TT, Lavker RM. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell. 2000;102(4):451–61. Epub 2000/08/31.PubMedCrossRefGoogle Scholar
  59. 59.
    Ito M, Liu Y, Yang Z, Nguyen J, Liang F, Morris RJ, et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med. 2005;11(12):1351–4. Epub 2005/11/17.PubMedCrossRefGoogle Scholar
  60. 60.
    Ohyama M, Terunuma A, Tock CL, Radonovich MF, Pise-Masison CA, Hopping SB, et al. Characterization and isolation of stem cell-enriched human hair follicle bulge cells. J Clin Invest. 2006;116(1):249–60. Epub 2006/01/06.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell. 1975;6(3):331–43. Epub 1975/11/01.CrossRefGoogle Scholar
  62. 62.
    Grafting of burns with cultured epithelium prepared from autologous epidermal cells. Lancet. 1981;1(8211):75–8. Epub 1981/01/10.Google Scholar
  63. 63.
    Yang X, Qu L, Wang X, Zhao M, Li W, Hua J, et al. Plasticity of epidermal adult stem cells derived from adult goat ear skin. Mol Reprod Dev. 2007;74(3):386–96. Epub 2006/09/26.PubMedCrossRefGoogle Scholar
  64. 64.
    Liu J, Song G, Wang Z, Huang B, Gao Q, Liu B, et al. Establishment of a corneal epithelial cell line spontaneously derived from human limbal cells. Exp Eye Res. 2007;84(3):599–609. Epub 2007/01/16.PubMedCrossRefGoogle Scholar
  65. 65.
    Regauer S, Franke WW, Virtanen I. Intermediate filament cytoskeleton of amnion epithelium and cultured amnion epithelial cells: expression of epidermal cytokeratins in cells of a simple epithelium. J Cell Biol. 1985;100(4):997–1009. Epub 1985/04/01.PubMedCrossRefGoogle Scholar
  66. 66.
    Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3(3):301–13. Epub 2008/09/13PubMedCrossRefGoogle Scholar
  67. 67.
    Oh M, Nor JE. The perivascular niche and self-renewal of stem cells. Front Physiol. 2015;6:367. Epub 2015/12/24.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    da Silva ML, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci. 2006;119(Pt 11):2204–13. Epub 2006/05/11.Google Scholar
  69. 69.
    von Koskull H, Virtanen I. Induction of cytokeratin expression in human mesenchymal cells. J Cell Physiol. 1987;133(2):321–9. Epub 1987/11/01.CrossRefGoogle Scholar
  70. 70.
    Li R, Liang J, Ni S, Zhou T, Qing X, Li H, et al. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell. 2010;7(1):51–63. Epub 2010/07/14.CrossRefGoogle Scholar
  71. 71.
    Trosan P, Javorkova E, Zajicova A, Hajkova M, Hermankova B, Kossl J, et al. The supportive role of insulin-like growth factor-I in the differentiation of murine mesenchymal stem cells into corneal-like cells. Stem Cells Dev. 2016;25(11):874–81. Epub 2016/04/07.PubMedCrossRefGoogle Scholar
  72. 72.
    Sanchez-Abarca LI, Hernandez-Galilea E, Lorenzo R, Herrero C, Velasco A, Carrancio S, et al. Human bone marrow stromal cells differentiate into corneal tissue and prevent ocular graft-versus-host disease in mice. Cell Transplant. 2015;24(12):2423–33. Epub 2015/02/20.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Wen L, Zhu M, Madigan MC, You J, King NJ, Billson FA, et al. Immunomodulatory effects of bone marrow-derived mesenchymal stem cells on pro-inflammatory cytokine-stimulated human corneal epithelial cells. PLoS One. 2014;9(7):e101841. Epub 2014/07/09.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Zeppieri M, Salvetat ML, Beltrami A, Cesselli D, Russo R, Alcalde I, et al. Adipose derived stem cells for corneal wound healing after laser induced corneal lesions in mice. J Clin Med. 2017;6(12). Epub 2017/12/06.PubMedCentralCrossRefPubMedGoogle Scholar
  75. 75.
    Davies JE, Walker JT, Keating A. Concise review: Wharton's jelly: the rich, but enigmatic, source of mesenchymal stromal cells. Stem Cells Transl Med. 2017;6(7):1620–30. Epub 2017/05/11.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Nam SM, Maeng YS, Kim EK, Seo KY, Lew H. Ex vivo expansion of human Limbal epithelial cells using human placenta-derived and umbilical cord-derived mesenchymal stem cells. Stem Cells Int. 2017;2017:4206187. Epub 2017/09/13.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Xiao L, Nasu M. From regenerative dentistry to regenerative medicine: progress, challenges, and potential applications of oral stem cells. Stem Cells Cloning. 2014;7:89–99. Epub 2014/12/17PubMedPubMedCentralGoogle Scholar
  78. 78.
    Gorski B. Gingiva as a new and the most accessible source of mesenchymal stem cells from the oral cavity to be used in regenerative therapies. Postepy Hig Med Dosw (Online). 2016;70(0):858–71. Epub 2016/09/07.CrossRefGoogle Scholar
  79. 79.
    Tsai CL, Chuang PC, Kuo HK, Chen YH, Su WH, Wu PC. Differentiation of stem cells from human exfoliated deciduous teeth toward a phenotype of corneal epithelium in vitro. Cornea. 2015;34(11):1471–7. Epub 2015/07/15.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Lwigale PY, Cressy PA, Bronner-Fraser M. Corneal keratocytes retain neural crest progenitor cell properties. Dev Biol. 2005;288(1):284–93. Epub 2005/11/03.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Chan AA, Hertsenberg AJ, Funderburgh ML, Mann MM, Du Y, Davoli KA, et al. Differentiation of human embryonic stem cells into cells with corneal keratocyte phenotype. PLoS One. 2013;8(2):e56831. Epub 2013/02/26.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Hertsenberg AJ, Funderburgh JL. Generation of corneal Keratocytes from human embryonic stem cells. Methods Mol Biol. 2016;1341:285–94. Epub 2015/06/01.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Naylor RW, McGhee CN, Cowan CA, Davidson AJ, Holm TM, Sherwin T. Derivation of corneal Keratocyte-like cells from human induced pluripotent stem cells. PLoS One. 2016;11(10):e0165464. Epub 2016/10/30.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Syed-Picard FN, Du Y, Lathrop KL, Mann MM, Funderburgh ML, Funderburgh JL. Dental pulp stem cells: a new cellular resource for corneal stromal regeneration. Stem Cells Transl Med. 2015;4(3):276–85. Epub 2015/02/26.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Liu H, Zhang J, Liu CY, Wang IJ, Sieber M, Chang J, et al. Cell therapy of congenital corneal diseases with umbilical mesenchymal stem cells: lumican null mice. PLoS One. 2010;5(5):e10707. Epub 2010/05/27.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Coulson-Thomas VJ, Caterson B, Kao WW. Transplantation of human umbilical mesenchymal stem cells cures the corneal defects of mucopolysaccharidosis VII mice. Stem Cells. 2013;31(10):2116–26. Epub 2013/07/31.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Liu H, Zhang J, Liu CY, Hayashi Y, Kao WW. Bone marrow mesenchymal stem cells can differentiate and assume corneal keratocyte phenotype. J Cell Mol Med. 2012;16(5):1114–24. Epub 2011/09/03.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Park SH, Kim KW, Chun YS, Kim JC. Human mesenchymal stem cells differentiate into keratocyte-like cells in keratocyte-conditioned medium. Exp Eye Res. 2012;101:16–26. Epub 2012/06/12.PubMedCrossRefGoogle Scholar
  89. 89.
    Demirayak B, Yuksel N, Celik OS, Subasi C, Duruksu G, Unal ZS, et al. Effect of bone marrow and adipose tissue-derived mesenchymal stem cells on the natural course of corneal scarring after penetrating injury. Exp Eye Res. 2016;151:227–35. Epub 2016/08/29.PubMedCrossRefGoogle Scholar
  90. 90.
    Jiang Z, Liu G, Meng F, Wang W, Hao P, Xiang Y, et al. Paracrine effects of mesenchymal stem cells on the activation of keratocytes. Br J Ophthalmol. 2017;101(11):1583–90. Epub 2017/08/28.PubMedCrossRefGoogle Scholar
  91. 91.
    Yun YI, Park SY, Lee HJ, Ko JH, Kim MK, Wee WR, et al. Comparison of the anti-inflammatory effects of induced pluripotent stem cell-derived and bone marrow-derived mesenchymal stromal cells in a murine model of corneal injury. Cytotherapy. 2017;19(1):28–35. Epub 2016/11/15.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Arnalich-Montiel F, Pastor S, Blazquez-Martinez A, Fernandez-Delgado J, Nistal M, Alio JL, et al. Adipose-derived stem cells are a source for cell therapy of the corneal stroma. Stem Cells. 2008;26(2):570–9. Epub 2007/12/11.PubMedCrossRefGoogle Scholar
  93. 93.
    Du Y, Roh DS, Funderburgh ML, Mann MM, Marra KG, Rubin JP, et al. Adipose-derived stem cells differentiate to keratocytes in vitro. Mol Vis. 2010;16:2680–9. Epub 2010/12/24.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Ma XY, Bao HJ, Cui L, Zou J. The graft of autologous adipose-derived stem cells in the corneal stromal after mechanic damage. PLoS One. 2013;8(10):e76103. Epub 2013/10/08.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Zhang S, Espandar L, Imhof KM, Bunnell BA. Differentiation of human adipose-derived stem cells along the keratocyte lineage In vitro. J Clin Exp Ophthalmol. 2013;4(270). Epub 2013/08/13.Google Scholar
  96. 96.
    Alio del Barrio JL, Chiesa M, Gallego Ferrer G, Garagorri N, Briz N, Fernandez-Delgado J, et al. Biointegration of corneal macroporous membranes based on poly(ethyl acrylate) copolymers in an experimental animal model. J Biomed Mater Res A. 2015;103(3):1106–18. Epub 2014/06/10.PubMedCrossRefGoogle Scholar
  97. 97.
    Alio del Barrio JL, Chiesa M, Garagorri N, Garcia-Urquia N, Fernandez-Delgado J, Bataille L, et al. Acellular human corneal matrix sheets seeded with human adipose-derived mesenchymal stem cells integrate functionally in an experimental animal model. Exp Eye Res. 2015;132:91–100. Epub 2015/01/28.PubMedCrossRefGoogle Scholar
  98. 98.
    Alio Del Barrio JL, El Zarif M, Azaar A, Makdissy N, Khalil C, Harb W, et al. Corneal stroma enhancement with Decellularized stromal laminas with or without stem cell Recellularization for advanced keratoconus. Am J Ophthalmol. 2017.; Epub 2017/11/07.Google Scholar
  99. 99.
    Lynch AP, Ahearne M. Retinoic acid enhances the differentiation of adipose-derived stem cells to Keratocytes in vitro. Transl Vis Sci Technol. 2017;6(1):6. Epub 2017/02/01.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Corpuz LM, Funderburgh JL, Funderburgh ML, Bottomley GS, Prakash S, Conrad GW. Molecular cloning and tissue distribution of keratocan. Bovine corneal keratan sulfate proteoglycan 37A. J Biol Chem. 1996;271(16):9759–63. Epub 1996/04/19.PubMedCrossRefGoogle Scholar
  101. 101.
    Choong PF, Mok PL, Cheong SK, Then KY. Mesenchymal stromal cell-like characteristics of corneal keratocytes. Cytotherapy. 2007;9(3):252–8. Epub 2007/04/28.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    McCabe KL, Kunzevitzky NJ, Chiswell BP, Xia X, Goldberg JL, Lanza R. Efficient generation of human embryonic stem cell-derived corneal endothelial cells by directed differentiation. PLoS One. 2015;10(12):e0145266. Epub 2015/12/23.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Song Q, Yuan S, An Q, Chen Y, Mao FF, Liu Y, et al. Directed differentiation of human embryonic stem cells to corneal endothelial cell-like cells: a transcriptomic analysis. Exp Eye Res. 2016;151:107–14. Epub 2016/08/16.CrossRefGoogle Scholar
  104. 104.
    Chen P, Chen JZ, Shao CY, Li CY, Zhang YD, Lu WJ, et al. Treatment with retinoic acid and lens epithelial cell-conditioned medium in vitro directed the differentiation of pluripotent stem cells towards corneal endothelial cell-like cells. Exp Ther Med. 2015;9(2):351–60. Epub 2015/01/13.PubMedCrossRefGoogle Scholar
  105. 105.
    Zhao JJ, Afshari NA. Generation of human corneal endothelial cells via in vitro ocular lineage restriction of pluripotent stem cells. Invest Ophthalmol Vis Sci. 2016;57(15):6878–84. Epub 2016/12/22.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Ju C, Zhang K, Wu X. Derivation of corneal endothelial cell-like cells from rat neural crest cells in vitro. PLoS One. 2012;7(7):e42378. Epub 2012/08/04.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Inagaki E, Hatou S, Higa K, Yoshida S, Shibata S, Okano H, et al. Skin-derived precursors as a source of progenitors for corneal endothelial regeneration. Stem Cells Transl Med. 2017;6(3):788–98. Epub 2017/02/12.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Shen L, Sun P, Zhang C, Yang L, Du L, Wu X. Therapy of corneal endothelial dysfunction with corneal endothelial cell-like cells derived from skin-derived precursors. Sci Rep. 2017;7(1):13400. Epub 2017/10/19.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Joyce NC, Harris DL, Markov V, Zhang Z, Saitta B. Potential of human umbilical cord blood mesenchymal stem cells to heal damaged corneal endothelium. Mol Vis. 2012;18:547–64. Epub 2012/03/16.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Nakahara M, Okumura N, Kay EP, Hagiya M, Imagawa K, Hosoda Y, et al. Corneal endothelial expansion promoted by human bone marrow mesenchymal stem cell-derived conditioned medium. PLoS One. 2013;8(7):e69009. Epub 2013/07/31.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Lachaud CC, Soria F, Escacena N, Quesada-Hernandez E, Hmadcha A, Alio J, et al. Mesothelial cells: a cellular surrogate for tissue engineering of corneal endothelium. Invest Ophthalmol Vis Sci. 2014;55(9):5967–78. Epub 2014/08/21.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Tuft SJ, Coster DJ. The corneal endothelium. Eye (Lond). 1990;4(Pt 3):389–424. Epub 1990/01/01.CrossRefGoogle Scholar
  113. 113.
    Mutsaers SE, Wilkosz S. Structure and function of mesothelial cells. Cancer Treat Res. 2007;134:1–19. Epub 2007/07/18.PubMedGoogle Scholar
  114. 114.
    Lachaud CC, Lopez-Beas J, Soria B, Hmadcha A. EGF-induced adipose tissue mesothelial cells undergo functional vascular smooth muscle differentiation. Cell Death Dis. 2014;5:e1304. Epub 2014/06/27.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Lansley SM, Searles RG, Hoi A, Thomas C, Moneta H, Herrick SE, et al. Mesothelial cell differentiation into osteoblast- and adipocyte-like cells. J Cell Mol Med. 2011;15(10):2095–105. Epub 2010/11/13.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Herrick SE, Mutsaers SE. Mesothelial progenitor cells and their potential in tissue engineering. Int J Biochem Cell Biol. 2004;36(4):621–42. Epub 2004/03/11.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Christian Claude Lachaud
    • 1
  • Abdelkrim Hmadcha
    • 1
  • Bernat Soria
    • 1
    • 2
    Email author
  1. 1.Department of Cell Regeneration and Advanced TherapiesAndalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo Olavide-University of Seville-CSICSevilleSpain
  2. 2.Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)MadridSpain

Personalised recommendations