Advertisement

Corneal Stromal Stem Cell: Methods for Ex Vivo Expansion

  • Olena Al-Shymali
  • Jorge L. Alió del Barrio
  • James L. FunderburghEmail author
Chapter
Part of the Essentials in Ophthalmology book series (ESSENTIALS)

Abstract

The cornea is a transparent, well-organized connective tissue that provides two-thirds of the eye’s total refractive power. The centermost layer of the cornea is the stroma that makes up approximately 90% of the corneal volume. The corneal stromal limbus contains anatomical features, named the palisades of Vogt, that form a niche for both limbal epithelial stem cells (LESCs) and corneal stromal stem cells (CSSC). CSSC are derived from the neural crest as they express genes typical for descendants of the neural ectoderm such as PAX6, Six2, Six3, and Notch1. The adult stem cell marker ABCG2 is well expressed by CSSC. Moreover, CSSC express mesenchymal stem cell (MSC) markers such as CD73, CD90, and CD166. They exhibit clonal growth, self-renewal properties, and a potential for differentiation into multiple distinct tissue types. Upon the incubation in a keratocyte differentiation medium, CSSC showed the potential to differentiate into a keratocyte by producing extracellular matrix components that in adults are uniquely expressed in the corneal stroma such as keratocan, keratan sulfate, and aldehyde dehydrogenase 3A1. Several studies and the anatomical proximity of LESC and CSSC populations in the limbal niche suggest that the principal role of CSSC in vivo is the homeostatic maintenance of the LESC. Human CSSC do not trigger a xenogeneic T-cell-mediated immune response reaction in vivo and suppress T-cell proliferation in vitro. These findings support an immunomodulatory function for CSSC and the potential use of allogeneic CSSC in different cell-based or tissue-engineered therapeutic applications.

Keywords

Corneal stromal stem cells Stroma Limbal epithelial stem cells Limbal stem cells Limbal niche Niche cells Mesenchymal stem cells Keratocyte 

Notes

Conflict of Interest

Olena Al-Shymali: no conflict of interest

Jorge L. Alio del Barrio: no conflict of interest

James L. Funderburgh: no conflict of interest

Informed Consent

No human studies were carried out by the authors for this article.

Animal Studies

No animal studies were carried out by the authors for this article.

References

  1. 1.
    Levin L, Nilsson S, Ver Hoeve J, Wu S, Kaufman P, Alm A. Adler’s physiology of the eye: expert consult - Online and Print. 11th ed. Edingburg: Saunders/Elsevier; 2011.Google Scholar
  2. 2.
    Funderburgh J. Keratan sulfate: structure, biosynthesis, and function. Glycobiology. 2000;10(10):951–8.PubMedGoogle Scholar
  3. 3.
    Hassell J, Birk D. The molecular basis of corneal transparency. Exp Eye Res. 2010;91(3):326–35.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Kao W, Liu C. Roles of lumican and keratocan on corneal transparency. Glycoconj J. 2002;19(4–5):275–85.PubMedGoogle Scholar
  5. 5.
    Lewis P, Pinali C, Young R, Meek K, Quantock A, Knupp C. Structural interactions between collagen and proteoglycans are elucidated by three-dimensional electron tomography of bovine cornea. Structure. 2010;18(2):239–45.PubMedGoogle Scholar
  6. 6.
    Parfitt G, Pinali C, Young R, Quantock A, Knupp C. Three-dimensional reconstruction of collagen-proteoglycan interactions in the mouse corneal stroma by electron tomography. J Struct Biol. 2010;170(2):392–7.PubMedGoogle Scholar
  7. 7.
    Zieske J. Corneal development associated with eyelid opening. Int J Dev Biol. 2004;48(8–9):903–11.PubMedGoogle Scholar
  8. 8.
    Jester J, Lee Y, Huang J, Houston J, Adams B, Cavanagh H, et al. Postnatal corneal transparency, keratocyte cell cycle exit and expression of ALDH1A1. Investig Ophthalmol Vis Sci. 2007;48(9):4061–9.Google Scholar
  9. 9.
    Wilson S. Analysis of the keratocyte apoptosis, keratocyte proliferation, and myofibroblast transformation responses after photorefractive keratectomy and laser in situ keratomileusis. Trans Am Ophthalmol Soc. 2002;100:411–33.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Mohan R, Hutcheon A, Choi R, Hong J, Lee J, Mohan R, et al. Apoptosis, necrosis, proliferation, and myofibroblast generation in the stroma following LASIK and PRK. Exp Eye Res. 2003;76(1):71–87.PubMedGoogle Scholar
  11. 11.
    Szentmary N, Nagy Z, Resch M, Szende B, Suveges I. Proliferation and apoptosis in the corneal stroma in longterm follow-up after photorefractive keratectomy. Pathol Res Pract. 2005;201(5):399–404.PubMedGoogle Scholar
  12. 12.
    Funderburgh J, Mann M, Funderburgh M. Keratocyte phenotype mediates proteoglycan structure: a role for fibroblasts in corneal fibrosis. J Biol Chem. 2003;278(46):45629–37.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Johnson G. Vision 2020: the right to sight: report on the sixth general assembly of the International Agency for the Prevention of Blindness (IAPB). Community Eye Health. 1999;12(32):59–60.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Whitcher J, Srinivasan M, Upadhyay M. Corneal blindness: a global perspective. Bull World Health Organ. 2001;79(3):214–21.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Pascolini D, Mariotti S, Pokharel G, Pararajasegaram R, Etya’ale D, Negrel A, et al. 2002 global update of available data on visual impairment: a compilation of population-based prevalence studies. Ophthalmic Epidemiol. 2004;11(2):67–115.PubMedGoogle Scholar
  16. 16.
    Dandona L, Ragu K, Janarthanan M, Naduvilath T, Shenoy R, Rao G. Indications for penetrating keratoplasty in India. Indian J Ophthalmol. 1997;45(3):163–8.PubMedGoogle Scholar
  17. 17.
    Long C, Roth M, Tasheva E, Funderburgh M, Smit R, Conrad G, et al. Fibroblast growth factor-2 promotes keratan sulfate proteoglycan expression by keratocytes in vitro. J Biol Chem. 2000;275(18):13918–23.PubMedGoogle Scholar
  18. 18.
    Ren R, Hutcheon A, Guo X, Saeidi N, Melotti S, Ruberti J, et al. Human primary corneal fibroblasts synthesize and deposit proteoglycans in long-term 3-D cultures. Dev Dyn. 2008;237(10):2705–15.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Funderburgh M, Du Y, Mann M, SundarRaj N, Funderburgh J. PAX6 expression identifies progenitor cells for corneal keratocytes. FASEB J. 2005;19(10):1371–3.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Funderburgh J, Funderburgh M, Du Y. Stem cells in the limbal stroma. Ocul Surf. 2016;14(2):113–20.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Golebiewska A, Brons N, Bjerkvig R, Niclou S. Critical appraisal of the side population assay in stem cell and cancer stem cell research. Cell Stem Cell. 2011;8(2):136–47.PubMedGoogle Scholar
  22. 22.
    Hertsenberg A, Funderburgh J. Stem cells in the cornea. Prog Mol Biol Transl Sci. 2015;134:25–41.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Du Y, Funderburgh M, Mann M, SundarRaj N, Funderburgh J. Multipotent stem cells in human corneal stroma. Stem Cells. 2005;23(9):1266–75.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Goodell M, Brose K, Paradis G, Conner A, Mulligan R. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med. 1996;183(4):1797–806.PubMedGoogle Scholar
  25. 25.
    Sosnova M, Bradl M, Forrester J. CD34+ corneal stromal cells are bone marrow-derived and express hemopoietic stem cell markers. Stem Cells. 2005;23(4):507–15.PubMedGoogle Scholar
  26. 26.
    Corselli M, Chen C, Crisan M, Lazzari L, Peault B. Perivascular ancestors of adult multipotent stem cells. Arterioscler Thromb Vasc Biol. 2010;30(6):1104–9.PubMedGoogle Scholar
  27. 27.
    Yoshida S, Shimmura S, Nagoshi N, Fukuda K, Matsuzaki Y, Okano H, et al. Isolation of multipotent neural crest-derived stem cells from the adult mouse cornea. Stem Cells. 2006;24(12):2714–22.PubMedGoogle Scholar
  28. 28.
    Caplan A. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol. 2007;213(2):341–7.PubMedGoogle Scholar
  29. 29.
    Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.Google Scholar
  30. 30.
    Polisetty N, Fatima A, Madhira S, Sangwan V, Vemuganti G. Mesenchymal cells from limbal stroma of human eye. Mol Vis. 2008;14:431–42.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Choong P, Mok P, Cheong S, Then K. Mesenchymal stromal cell-like characteristics of corneal keratocytes. Cytotherapy. 2007;9(3):252–8.PubMedGoogle Scholar
  32. 32.
    Li G, Zhu Y, Xie H, Chen S, Tseng S. Mesenchymal stem cells derived from human limbal niche cells. Investig Ophthalmol Vis Sci. 2012;53(9):5686–97.Google Scholar
  33. 33.
    Branch M, Hashmani K, Dhillon P, Jones D, Dua H, Hopkinson A. Mesenchymal stem cells in the human corneal limbal stroma. Investig Ophthalmol Vis Sci. 2012;53(9):5109–16.Google Scholar
  34. 34.
    Du Y, SundarRaj N, Funderburgh M, Harvey S, Birk D, Funderburgh J. Secretion and organization of cornea-like tissue in vitro by stem cells from human corneal stroma. Investig Ophthalmol Vis Sci. 2007;48(11):5038–45.Google Scholar
  35. 35.
    Pinnamaneni N, Funderburgh J. Concise review: stem cells in the corneal stroma. Stem Cells. 2012;30(6):1059–63.PubMedPubMedCentralGoogle Scholar
  36. 36.
    West-Mays J, Dwivedi D. The keratocyte: corneal stromal cell with variable repair phenotypes. Int J Biochem Cell Biol. 2006;38(10):1625–31.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Du Y, Carlson E, Funderburgh M, Birk D, Pearlman E, Guo N, et al. Stem cell therapy restores transparency to defective murine corneas. Stem Cells. 2009;27(7):1635–42.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Syed-Picard F, Du Y, Hertsenberg A, Palchesko R, Funderburgh M, Feinberg A, et al. Scaffold-free tissue engineering of functional corneal stromal tissue. J Tissue Eng Regen Med. 2018;12(1):59–69.PubMedGoogle Scholar
  39. 39.
    Shortt A, Secker G, Munro P, Khaw P, Tuft S, Daniels J. Characterization of the limbal epithelial stem cell niche: novel imaging techniques permit in vivo observation and targeted biopsy of limbal epithelial stem cells. Stem Cells. 2007;25(6):1402–9.PubMedGoogle Scholar
  40. 40.
    Sangwan V, Basu S, Vemuganti G, Sejpal K, Subramaniam S, Bandyopadhyay S, et al. Clinical outcomes of xeno-free autologous cultivated limbal epithelial transplantation: a 10-year study. Br J Ophthalmol. 2011;95(11):1525–9.PubMedGoogle Scholar
  41. 41.
    Rama P, Matuska S, Paganoni G, Spinelli A, De Luca M, Pellegrini G. Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med. 2010;363(2):147–55.PubMedGoogle Scholar
  42. 42.
    Shortt A, Tuft S, Daniels J. Corneal stem cells in the eye clinic. Br Med Bull. 2011;100:209–25.PubMedGoogle Scholar
  43. 43.
    Xie H, Chen S, Li G, Tseng S. Isolation and expansion of human limbal stromal niche cells. Investig Ophthalmol Vis Sci. 2012;53(1):279–86.Google Scholar
  44. 44.
    Chen S, Hayashida Y, Chen M, Xie H, Tseng S. A new isolation method of human limbal progenitor cells by maintaining close association with their niche cells. Tissue Eng Part C Methods. 2011;17(5):537–48.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Hayashi R, Yamato M, Sugiyama H, Sumide T, Yang J, Okano T, et al. N-Cadherin is expressed by putative stem/progenitor cells and melanocytes in the human limbal epithelial stem cell niche. Stem Cells. 2007;25(2):289–96.PubMedGoogle Scholar
  46. 46.
    Higa K, Kato N, Yoshida S, Ogawa Y, Shimazaki J, Tsubota K, et al. Aquaporin 1-positive stromal niche-like cells directly interact with N-cadherin-positive clusters in the basal limbal epithelium. Stem Cell Res. 2013;10(2):147–55.PubMedGoogle Scholar
  47. 47.
    Massie I, Dziasko M, Kureshi A, Levis H, Morgan L, Neale M, et al. Advanced imaging and tissue engineering of the human limbal epithelial stem cell niche. Methods Mol Biol. 2015;1235:179–202.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Dziasko M, Amer H, Levis H, Shortt A, Tuft S, Daniels J. Localisation of epithelial cells capable of holoclone formation in vitro and direct interaction with stromal cells in the native human limbal crypt. PLoS One. 2014;9(4):e94283.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Higa K, Shimmura S, Miyashita H, Kato N, Ogawa Y, Kawakita T, et al. N-cadherin in the maintenance of human corneal limbal epithelial progenitor cells in vitro. Investig Ophthalmol Vis Sci. 2009;50(10):4640–5.Google Scholar
  50. 50.
    Omoto M, Miyashita H, Shimmura S, Higa K, Kawakita T, Yoshida S, et al. The use of human mesenchymal stem cell-derived feeder cells for the cultivation of transplantable epithelial sheets. Investig Ophthalmol Vis Sci. 2009;50(5):2109–15.Google Scholar
  51. 51.
    Basu S, Hertsenberg A, Funderburgh M, Burrow M, Mann M, Du Y, et al. Human limbal biopsy-derived stromal stem cells prevent corneal scarring. Sci Transl Med. 2014;6(266):266ra172.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Zhang X, Sun H, Yuan X, Zhang L, Zhao S. Utilization of human limbal mesenchymal cells as feeder layers for human limbal stem cells cultured on amniotic membrane. J Tissue Eng Regen Med. 2010;4(1):38–44.PubMedGoogle Scholar
  53. 53.
    Ainscough S, Linn M, Barnard Z, Schwab IR, Harkin D. Effects of fibroblast origin and phenotype on the proliferative potential of limbal epithelial progenitor cells. Exp Eye Res. 2011;92(1):10–9.PubMedGoogle Scholar
  54. 54.
    Hashmani K, Branch M, Sidney L, Dhillon P, Verma M, McIntosh O, et al. Characterization of corneal stromal stem cells with the potential for epithelial transdifferentiation. Stem Cell Res Ther. 2013;4(3):75.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Bray L, Heazlewood C, Munster D, Hutmacher D, Atkinson K, Harkin D. Immunosuppressive properties of mesenchymal stromal cell cultures derived from the limbus of human and rabbit corneas. Cytotherapy. 2014;16(1):64–73.PubMedGoogle Scholar
  56. 56.
    Katikireddy K, Dana R, Jurkunas U. Differentiation potential of limbal fibroblasts and bone marrow mesenchymal stem cells to corneal epithelial cells. Stem Cells. 2014;32(3):717–29.PubMedGoogle Scholar
  57. 57.
    Huang M, Wang B, Wan P, Liang X, Wang X, Liu Y, et al. Roles of limbal microvascular net and limbal stroma in regulating maintenance of limbal epithelial stem cells. Cell Tissue Res. 2015;359(2):547–63.PubMedGoogle Scholar
  58. 58.
    Xie H, Chen S, Li G, Tseng S. Limbal epithelial stem/progenitor cells attract stromal niche cells by SDF-1/CXCR4 signaling to prevent differentiation. Stem Cells. 2011;29(11):1874–85.PubMedGoogle Scholar
  59. 59.
    Knaan-Shanzer S. Concise review: the immune status of mesenchymal stem cells and its relevance for therapeutic application. Stem Cells. 2014;32(3):603–8.PubMedGoogle Scholar
  60. 60.
    Atoui R, Chiu R. Immune responses after mesenchymal stem cell implantation. Methods Mol Biol. 2013;1036:107–20.PubMedGoogle Scholar
  61. 61.
    Stagg J, Galipeau J. Mechanisms of immune modulation by mesenchymal stromal cells and clinical translation. Curr Mol Med. 2013;13(5):856–67.PubMedGoogle Scholar
  62. 62.
    Basu S, Fernandez M, Das S, Gaddipati S, Vemuganti G, Sangwan V. Clinical outcomes of xeno-free allogeneic cultivated limbal epithelial transplantation for bilateral limbal stem cell deficiency. Br J Ophthalmol. 2012;96(12):1504–9.PubMedGoogle Scholar
  63. 63.
    Basu S, Ali H, Sangwan V. Clinical outcomes of repeat autologous cultivated limbal epithelial transplantation for ocular surface burns. Am J Ophthalmol. 2012;153(4):643–50.PubMedGoogle Scholar
  64. 64.
    Lal I, Panchal B, Sangwan V. In-vivo expansion of autologous limbal stem cell using simple limbal epithelial transplantation for treatment of limbal stem cell deficiency. BMJ Case Rep. 2013;2013:bcr2013009247.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Wu J, Du Y, Watkins S, Funderburgh J, Wagner W. The engineering of organized human corneal tissue through the spatial guidance of corneal stromal stem cells. Biomaterials. 2012;33(5):1343–52.PubMedGoogle Scholar
  66. 66.
    Wu J, Du Y, Mann M, Yang E, Funderburgh J, Wagner W. Bioengineering organized, multilamellar human corneal stromal tissue by growth factor supplementation on highly aligned synthetic substrates. Tissue Eng Part A. 2013;19(17–18):2063–75.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Wu J, Mann M, Funderburgh J, Wagner W. Corneal stromal stem cells versus corneal fibroblasts in generating structurally appropriate corneal stromal tissue. Exp Eye Res. 2014;120:71–81.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Wu J, Rnjak-Kovacina J, Du Y, Funderburgh M, Kaplan D, Funderburgh J. Corneal stromal bioequivalents secreted on patterned silk substrates. Biomaterials. 2014;35(12):3744–55.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Karamichos D, Funderburgh M, Hutcheon A, Zieske J, Du Y, Wu J, et al. A role for topographic cues in the organization of collagenous matrix by corneal fibroblasts and stem cells. PLoS One. 2014;9(1):e86260.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Ghezzi C, Marelli B, Omenetto F, Funderburgh J, Kaplan D. 3D functional corneal stromal tissue equivalent based on corneal stromal stem cells and multi-layered silk film architecture. PLoS One. 2017;12(1):e0169504.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Gosselin E, Torregrosa T, Ghezzi C, Mendelsohn A, Gomes R, Funderburgh J, et al. Multi-layered silk film coculture system for human corneal epithelial and stromal stem cells. J Tissue Eng Regen Med. 2018;12(1):285–95.PubMedGoogle Scholar
  72. 72.
    Sidney L, Branch M, Dua H, Hopkinson A. Effect of culture medium on propagation and phenotype of corneal stroma-derived stem cells. Cytotherapy. 2015;17(12):1706–22.PubMedGoogle Scholar
  73. 73.
    Matthyssen S, Ni Dhubhqhaill S, Van Gerwen V, Zakaria N. Xeno-free cultivation of mesenchymal stem cells from the corneal stroma. Investig Ophthalmol Vis Sci. 2017;58(5):2659–65.Google Scholar
  74. 74.
    Mathews S, Chidambaram J, Lanjewar S, Mascarenhas J, Prajna N, Muthukkaruppan V, et al. In vivo confocal microscopic analysis of normal human anterior limbal stroma. Cornea. 2015;34(4):464–70.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Chidambaranathan G, Mathews S, Panigrahi A, Mascarenhas J, Prajna N, Muthukkaruppan V. In vivo confocal microscopic analysis of limbal stroma in patients with limbal stem cell deficiency. Cornea. 2015;34(11):1478–86.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Olena Al-Shymali
    • 1
  • Jorge L. Alió del Barrio
    • 2
  • James L. Funderburgh
    • 3
    Email author
  1. 1.Vissum CorporationAlicanteSpain
  2. 2.University Miguel HernandezVissum-Instituto Oftalmologico de AlicanteAlicanteSpain
  3. 3.University of Pittsburgh, Department of OphthalmologyPittsburghUSA

Personalised recommendations