Corneal Stem Cells: Identification and Methods of Ex Vivo Expansion

  • Christian Claude Lachaud
  • Abdelkrim Hmadcha
  • Bernat SoriaEmail author
Part of the Essentials in Ophthalmology book series (ESSENTIALS)


The discovery of corneal epithelial stem cells in the limbal basal epithelium, and their contribution to the homeostasis and renewal of the corneal epithelium, has supposed a tremendous breakthrough in ocular surface reconstruction, with limbal tissue graft transplantation providing for the first time a successful alternative to the transplantation of donor’s cornea in patients with limbal stem cell deficiency. More recent discoveries in the peripheral corneal stroma and endothelium layers of cells with stem/progenitor cells characteristics have opened up the promise of obtaining a supply of adequately differentiated cells for tissue engineering of corneal stromal and endothelial equivalents. Much applications based on the use of these corneal stem/progenitor cells are however still at the experimental stage, and their development will require to solve different challenges, such as optimizing their isolation and purification, improving their in vitro expansion, preserving their stem/progenitor phenotype in culture, and also defining the factors and signaling pathways which are required for their adequate differentiation. In this chapter, we recover past and current findings on the biological and molecular hallmarks of corneal layer-specific stem/progenitor cells, limbal epithelial stem cells, corneal stromal stem cells, and corneal endothelial progenitor cells and make emphasis on which are the different methods used for their isolation and ex vivo expansion.


Cornea Stem cell Progenitor Regenerative medicine Limbal epithelial stem cell Corneal stromal stem cell Corneal endothelial progenitor cell Isolation procedure Cell culture 



Authors are supported by the nonprofit Fundación Progreso y Salud, Consejería de Salud, and Junta de Andalucía; FEDER co-funded grants from Instituto de Salud Carlos III and the Ministry of Economy, Industry and Competitiveness (Red TerCel: RD12/0019/0028 and RD16/00259; CIBERDEM: CB07/08/0006; PI14/01015, PI16/00259, PI17/02104 and CD16/00118); Junta de Andalucía (PAI-BIO311, CTS-576, CTS 11-727, PI-0109-2014, PI0007/2016 and PI0272/2017). CIBERDEM is an initiative of the Instituto de Salud Carlos III.

Competing Interests

The authors declare no conflict of interest.

Informed Consent

No human studies were carried out by the authors for this article.

Animal Studies

No animal studies were carried out by the authors for this article.


  1. 1.
    Bourne WM. Biology of the corneal endothelium in health and disease. Eye (Lond). 2003;17(8):912–8.CrossRefGoogle Scholar
  2. 2.
    Torricelli AA, Wilson SE. Cellular and extracellular matrix modulation of corneal stromal opacity. Exp Eye Res. 2014;129:151–60.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Klintworth GK. Corneal dystrophies. Orphanet J Rare Dis. 2009;4:7.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Tuft SJ, Coster DJ. The corneal endothelium. Eye (Lond). 1990;4 .( Pt 3:389–424.CrossRefGoogle Scholar
  5. 5.
    Kruse FE. Stem cells and corneal epithelial regeneration. Eye (Lond). 1994;8(Pt 2):170–83.CrossRefGoogle Scholar
  6. 6.
    Nishida T. Commanding roles of keratocytes in health and disease. Cornea. 2010;29(Suppl 1):S3–6.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Sun TT, Lavker RM. Corneal epithelial stem cells: past, present, and future. J Investig Dermatol Symp Proc. 2004;9(3):202–7.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Dua HS, Miri A, Elalfy MS, Lencova A, Said DG. Amnion-assisted conjunctival epithelial redirection in limbal stem cell grafting. Br J Ophthalmol. 2017;101(7):913–9.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Atallah MR, Palioura S, Perez VL, Amescua G. Limbal stem cell transplantation: current perspectives. Clin Ophthalmol. 2016;10:593–602.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Fernandes M, Sridhar MS, Sangwan VS, Rao GN. Amniotic membrane transplantation for ocular surface reconstruction. Cornea. 2005;24(6):643–53.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Shortt AJ, Secker GA, Notara MD, Limb GA, Khaw PT, Tuft SJ, et al. Transplantation of ex vivo cultured limbal epithelial stem cells: a review of techniques and clinical results. Surv Ophthalmol. 2007;52(5):483–502.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Du Y, Funderburgh ML, Mann MM, SundarRaj N, Funderburgh JL. Multipotent stem cells in human corneal stroma. Stem Cells. 2005;23(9):1266–75.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Whikehart DR, Parikh CH, Vaughn AV, Mishler K, Edelhauser HF. Evidence suggesting the existence of stem cells for the human corneal endothelium. Mol Vis. 2005;11:816–24.PubMedPubMedCentralGoogle Scholar
  14. 14.
    McGowan SL, Edelhauser HF, Pfister RR, Whikehart DR. Stem cell markers in the human posterior limbus and corneal endothelium of unwounded and wounded corneas. Mol Vis. 2007;13:1984–2000.Google Scholar
  15. 15.
    He Z, Campolmi N, Gain P, Ha Thi BM, Dumollard JM, Duband S, et al. Revisited microanatomy of the corneal endothelial periphery: new evidence for continuous centripetal migration of endothelial cells in humans. Stem Cells. 2012;30(11):2523–34.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Katikireddy KR, Schmedt T, Price MO, Price FW, Jurkunas UV. Existence of neural crest-derived progenitor cells in normal and Fuchs endothelial dystrophy corneal endothelium. Am J Pathol. 2016;186(10):2736–50.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Zhu YT, Li F, Han B, Tighe S, Zhang S, Chen SY, et al. Activation of RhoA-ROCK-BMP signaling reprograms adult human corneal endothelial cells. J Cell Biol. 2014;206(6):799–811.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Yokoo S, Yamagami S, Yanagi Y, Uchida S, Mimura T, Usui T, et al. Human corneal endothelial cell precursors isolated by sphere-forming assay. Invest Ophthalmol Vis Sci. 2005;46(5):1626–31.CrossRefGoogle Scholar
  19. 19.
    Amano S, Yamagami S, Mimura T, Uchida S, Yokoo S. Corneal stromal and endothelial cell precursors. Cornea. 2006;25(10 Suppl 1):S73–7.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Choi JS, Williams JK, Greven M, Walter KA, Laber PW, Khang G, et al. Bioengineering endothelialized neo-corneas using donor-derived corneal endothelial cells and decellularized corneal stroma. Biomaterials. 2010;31(26):6738–45.PubMedCrossRefGoogle Scholar
  21. 21.
    Lu X, Chen D, Liu Z, Li C, Liu Y, Zhou J, et al. Enhanced survival in vitro of human corneal endothelial cells using mouse embryonic stem cell conditioned medium. Mol Vis. 2010;16:611–22.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Parikumar P, John S, Senthilkumar R, Manjunath S, Baskar S, Haraguchi K, et al. Successful transplantation of in vitro expanded human corneal endothelial precursors to corneal endothelial surface using a nanocomposite sheets. J Stem Cells Regen Med. 2011;7(2):94.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Yu WY, Sheridan C, Grierson I, Mason S, Kearns V, Lo AC, et al. Progenitors for the corneal endothelium and trabecular meshwork: a potential source for personalized stem cell therapy in corneal endothelial diseases and glaucoma. J Biomed Biotechnol. 2011;2011:412743.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Peh GS, Lee MX, Wu FY, Toh KP, Balehosur D, Mehta JS. Optimization of human corneal endothelial cells for culture: the removal of corneal stromal fibroblast contamination using magnetic cell separation. Int J Biomater. 2012;2012:601302.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Shapiro MS, Friend J, Thoft RA. Corneal re-epithelialization from the conjunctiva. Invest Ophthalmol Vis Sci. 1981;21(1 Pt 1):135–42.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Friedenwald JS. Growth pressure and metaplasia of conjunctival and corneal epithelium. Doc Ophthalmol Adv Ophthalmol. 1951;5-6:184–92.CrossRefGoogle Scholar
  27. 27.
    Kruse FE, Chen JJ, Tsai RJ, Tseng SC. Conjunctival transdifferentiation is due to the incomplete removal of limbal basal epithelium. Invest Ophthalmol Vis Sci. 1990;31(9):1903–13.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Kurpakus MA, Stock EL, Jones JC. Expression of the 55-kD/64-kD corneal keratins in ocular surface epithelium. Invest Ophthalmol Vis Sci. 1990;31(3):448–56.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Schermer A, Galvin S, Sun TT. Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol. 1986;103(1):49–62.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Cotsarelis G, Cheng SZ, Dong G, Sun TT, Lavker RM. Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell. 1989;57(2):201–9.CrossRefGoogle Scholar
  31. 31.
    Lehrer MS, Sun TT, Lavker RM. Strategies of epithelial repair: modulation of stem cell and transit amplifying cell proliferation. J Cell Sci. 1998;111(Pt 19):2867–75.PubMedGoogle Scholar
  32. 32.
    Lavker RM, Tseng SC, Sun TT. Corneal epithelial stem cells at the limbus: looking at some old problems from a new angle. Exp Eye Res. 2004;78(3):433–46.PubMedCrossRefGoogle Scholar
  33. 33.
    Shanmuganathan VA, Foster T, Kulkarni BB, Hopkinson A, Gray T, Powe DG, et al. Morphological characteristics of the limbal epithelial crypt. Br J Ophthalmol. 2007;91(4):514–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Zieske JD. Perpetuation of stem cells in the eye. Eye (Lond). 1994;8(Pt 2):163–9.CrossRefGoogle Scholar
  35. 35.
    Funderburgh JL, Funderburgh ML, Du Y. Stem cells in the limbal stroma. Ocul Surf. 2016;14(2):113–20.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Schlotzer-Schrehardt U, Dietrich T, Saito K, Sorokin L, Sasaki T, Paulsson M, et al. Characterization of extracellular matrix components in the limbal epithelial stem cell compartment. Exp Eye Res. 2007;85(6):845–60.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Polisetti N, Zenkel M, Menzel-Severing J, Kruse FE, Schlotzer-Schrehardt U. Cell adhesion molecules and stem cell-niche-interactions in the limbal stem cell niche. Stem Cells. 2016;34(1):203–19.PubMedCrossRefGoogle Scholar
  38. 38.
    Kruse FE, Volcker HE. Stem cells, wound healing, growth factors, and angiogenesis in the cornea. Curr Opin Ophthalmol. 1997;8(4):46–54.PubMedCrossRefGoogle Scholar
  39. 39.
    Pellegrini G, Dellambra E, Golisano O, Martinelli E, Fantozzi I, Bondanza S, et al. p63 identifies keratinocyte stem cells. Proc Natl Acad Sci U S A. 2001;98(6):3156–61.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Chen Z, de Paiva CS, Luo L, Kretzer FL, Pflugfelder SC, Li DQ. Characterization of putative stem cell phenotype in human limbal epithelia. Stem Cells. 2004;22(3):355–66.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Watanabe K, Nishida K, Yamato M, Umemoto T, Sumide T, Yamamoto K, et al. Human limbal epithelium contains side population cells expressing the ATP-binding cassette transporter ABCG2. FEBS Lett. 2004;565(1–3):6–10.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Ding XW, Wu JH, Jiang CP. ABCG2: a potential marker of stem cells and novel target in stem cell and cancer therapy. Life Sci. 2010;86(17–18):631–7.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    de Paiva CS, Chen Z, Corrales RM, Pflugfelder SC, Li DQ. ABCG2 transporter identifies a population of clonogenic human limbal epithelial cells. Stem Cells. 2005;23(1):63–73.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Ksander BR, Kolovou PE, Wilson BJ, Saab KR, Guo Q, Ma J, et al. ABCB5 is a limbal stem cell gene required for corneal development and repair. Nature. 2014;511(7509):353–7.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Kim EK, Lee GH, Lee B, Maeng YS. Establishment of novel limbus-derived, highly proliferative ABCG2(+)/ABCB5(+) limbal epithelial stem cell cultures. Stem Cells Int. 2017;2017:7678637.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Lopez-Paniagua M, Nieto-Miguel T, de la Mata A, Dziasko M, Galindo S, Rey E, et al. Comparison of functional limbal epithelial stem cell isolation methods. Exp Eye Res. 2016;146:83–94.PubMedCrossRefGoogle Scholar
  47. 47.
    Parekh M, Ferrari S, Di Iorio E, Barbaro V, Camposampiero D, Karali M, et al. A simplified technique for in situ excision of cornea and evisceration of retinal tissue from human ocular globe. J Vis Exp: JoVE. 2012;64:e3765.Google Scholar
  48. 48.
    Nieto-Miguel T, Calonge M, de la Mata A, Lopez-Paniagua M, Galindo S, de la Paz MF, et al. A comparison of stem cell-related gene expression in the progenitor-rich limbal epithelium and the differentiating central corneal epithelium. Mol Vis. 2011;17:2102–17.Google Scholar
  49. 49.
    Chen SY, Hayashida Y, Chen MY, Xie HT, Tseng SC. A new isolation method of human limbal progenitor cells by maintaining close association with their niche cells. Tissue Eng Part C Methods. 2011;17(5):537–48.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Espana EM, Romano AC, Kawakita T, Di Pascuale M, Smiddy R, Tseng SC. Novel enzymatic isolation of an entire viable human limbal epithelial sheet. Invest Ophthalmol Vis Sci. 2003;44(10):4275–81.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Stasi K, Goings D, Huang J, Herman L, Pinto F, Addis RC, et al. Optimal isolation and xeno-free culture conditions for limbal stem cell function. Invest Ophthalmol Vis Sci. 2014;55(1):375–86.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Pellegrini G, Golisano O, Paterna P, Lambiase A, Bonini S, Rama P, et al. Location and clonal analysis of stem cells and their differentiated progeny in the human ocular surface. J Cell Biol. 1999;145(4):769–82.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Sun TT, Green H. Cultured epithelial cells of cornea, conjunctiva and skin: absence of marked intrinsic divergence of their differentiated states. Nature. 1977;269(5628):489–93.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Kim HS, Jun Song X, de Paiva CS, Chen Z, Pflugfelder SC, Li DQ. Phenotypic characterization of human corneal epithelial cells expanded ex vivo from limbal explant and single cell cultures. Exp Eye Res. 2004;79(1):41–9.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Zhang X, Sun H, Tang X, Ji J, Li X, Sun J, et al. Comparison of cell-suspension and explant culture of rabbit limbal epithelial cells. Exp Eye Res. 2005;80(2):227–33.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Xie HT, Chen SY, Li GG, Tseng SC. Isolation and expansion of human limbal stromal niche cells. Invest Ophthalmol Vis Sci. 2012;53(1):279–86.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Yu M, Bojic S, Figueiredo GS, Rooney P, de Havilland J, Dickinson A, et al. An important role for adenine, cholera toxin, hydrocortisone and triiodothyronine in the proliferation, self-renewal and differentiation of limbal stem cells in vitro. Exp Eye Res. 2016;152:113–22.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Meyer-Blazejewska EA, Kruse FE, Bitterer K, Meyer C, Hofmann-Rummelt C, Wunsch PH, et al. Preservation of the limbal stem cell phenotype by appropriate culture techniques. Invest Ophthalmol Vis Sci. 2010;51(2):765–74.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Kruse FE, Tseng SC. Proliferative and differentiative response of corneal and limbal epithelium to extracellular calcium in serum-free clonal cultures. J Cell Physiol. 1992;151(2):347–60.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Miyashita H, Yokoo S, Yoshida S, Kawakita T, Yamagami S, Tsubota K, et al. Long-term maintenance of limbal epithelial progenitor cells using rho kinase inhibitor and keratinocyte growth factor. Stem Cells Transl Med. 2013;2(10):758–65.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Yanez-Soto B, Leonard BC, Raghunathan VK, Abbott NL, Murphy CJ. Effect of stratification on surface properties of corneal epithelial cells. Invest Ophthalmol Vis Sci. 2015;56(13):8340–8.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Kawakita T, Espana EM, He H, Yeh LK, Liu CY, Tseng SC. Calcium-induced abnormal epidermal-like differentiation in cultures of mouse corneal-limbal epithelial cells. Invest Ophthalmol Vis Sci. 2004;45(10):3507–12.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Seeber JW, Zorn-Kruppa M, Lombardi-Borgia S, Scholz H, Manzer AK, Rusche B, et al. Characterisation of human corneal epithelial cell cultures maintained under serum-free conditions. Altern Lab Anim: ATLA. 2008;36(5):569–83.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Lu R, Bian F, Lin J, Su Z, Qu Y, Pflugfelder SC, et al. Identification of human fibroblast cell lines as a feeder layer for human corneal epithelial regeneration. PLoS One. 2012;7(6):e38825.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Ghoubay-Benallaoua D, de Sousa C, Martos R, Latour G, Schanne-Klein MC, Dupin E, et al. Easy xeno-free and feeder-free method for isolating and growing limbal stromal and epithelial stem cells of the human cornea. PLoS One. 2017;12(11):e0188398.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Yokoo S, Yamagami S, Usui T, Amano S, Araie M. Human corneal epithelial equivalents for ocular surface reconstruction in a complete serum-free culture system without unknown factors. Invest Ophthalmol Vis Sci. 2008;49(6):2438–43.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Resau JH, Sakamoto K, Cottrell JR, Hudson EA, Meltzer SJ. Explant organ culture: a review. Cytotechnology. 1991;7(3):137–49.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Hendijani F. Explant culture: an advantageous method for isolation of mesenchymal stem cells from human tissues. Cell Prolif. 2017;50(2). Epub 2017 Feb 1.CrossRefGoogle Scholar
  69. 69.
    Gurdal M, Barut Selver O, Baysal K, Durak I. Comparison of culture media indicates a role for autologous serum in enhancing phenotypic preservation of rabbit limbal stem cells in explant culture. Cytotechnology. 2018;70:687–700.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Kethiri AR, Basu S, Shukla S, Sangwan VS, Singh V. Optimizing the role of limbal explant size and source in determining the outcomes of limbal transplantation: an in vitro study. PLoS One. 2017;12(9):e0185623.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Li W, Hayashida Y, He H, Kuo CL, Tseng SC. The fate of limbal epithelial progenitor cells during explant culture on intact amniotic membrane. Invest Ophthalmol Vis Sci. 2007;48(2):605–13.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Luznik Z, Hawlina M, Malicev E, Bertolin M, Kopitar AN, Ihan A, et al. Effect of cryopreserved amniotic membrane orientation on the expression of limbal mesenchymal and epithelial stem cell markers in prolonged limbal explant cultures. PLoS One. 2016;11(10):e0164408.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Pathak M, Olstad OK, Drolsum L, Moe MC, Smorodinova N, Kalasova S, et al. The effect of culture medium and carrier on explant culture of human limbal epithelium: a comparison of ultrastructure, keratin profile and gene expression. Exp Eye Res. 2016;153:122–32.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Valdetaro GP, Aldrovani M, Padua IR, Cristovam PC, Gomes JA, Laus JL. Supra-organization and optical anisotropies of the extracellular matrix in the amniotic membrane and limbal stroma before and after explant culture. Biomed Opt Express. 2016;7(12):4982–94.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Zamudio A, Wang Z, Chung SH, Wolosin JM. Inhibition of TGFbeta cell signaling for limbal explant culture in serumless, defined xeno-free conditions. Exp Eye Res. 2016;145:48–57.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Zhang ZH, Liu HY, Liu K, Xu X. Comparison of explant and enzyme digestion methods for ex vivo isolation of limbal epithelial progenitor cells. Curr Eye Res. 2016;41(3):318–25.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Li Y, Yang Y, Yang L, Zeng Y, Gao X, Xu H. Poly(ethylene glycol)-modified silk fibroin membrane as a carrier for limbal epithelial stem cell transplantation in a rabbit LSCD model. Stem Cell Res Ther. 2017;8(1):256.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Kim MK, Lee JL, Shin KS, Jung GA, Wee WR, Lee JH, et al. Isolation of putative corneal epithelial stem cells from cultured limbal tissue. Korean J Ophthalmol. 2006;20(1):55–61.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Mimura T, Yamagami S, Uchida S, Yokoo S, Ono K, Usui T, et al. Isolation of adult progenitor cells with neuronal potential from rabbit corneal epithelial cells in serum- and feeder layer-free culture conditions. Mol Vis. 2010;16:1712–9.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Chang CY, McGhee JJ, Green CR, Sherwin T. Comparison of stem cell properties in cell populations isolated from human central and limbal corneal epithelium. Cornea. 2011;30(10):1155–62.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Tuori A, Uusitalo H, Burgeson RE, Terttunen J, Virtanen I. The immunohistochemical composition of the human corneal basement membrane. Cornea. 1996;15(3):286–94.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Simon-Assmann P. The laminin family: founding members of the basement membrane. Cell Adhes Migr. 2013;7(1):44–7.CrossRefGoogle Scholar
  83. 83.
    Ebihara N, Mizushima H, Miyazaki K, Watanabe Y, Ikawa S, Nakayasu K, et al. The functions of exogenous and endogenous laminin-5 on corneal epithelial cells. Exp Eye Res. 2000;71(1):69–79.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Polisetti N, Sorokin L, Okumura N, Koizumi N, Kinoshita S, Kruse FE, et al. Laminin-511 and -521-based matrices for efficient ex vivo-expansion of human limbal epithelial progenitor cells. Sci Rep. 2017;7(1):5152.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Sabater AL, Perez VL. Amniotic membrane use for management of corneal limbal stem cell deficiency. Curr Opin Ophthalmol. 2017;28(4):363–9.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Shimazaki J, Yang HY, Tsubota K. Amniotic membrane transplantation for ocular surface reconstruction in patients with chemical and thermal burns. Ophthalmology. 1997;104(12):2068–76.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Kenyon KR, Tseng SC. Limbal autograft transplantation for ocular surface disorders. Ophthalmology. 1989;96(5):709–22; discussion 22–3.PubMedCrossRefGoogle Scholar
  88. 88.
    Tsai RJ, Tseng SC. Human allograft limbal transplantation for corneal surface reconstruction. Cornea. 1994;13(5):389–400.PubMedCrossRefGoogle Scholar
  89. 89.
    Tsai RJ, Li LM, Chen JK. Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N Engl J Med. 2000;343(2):86–93.PubMedCrossRefGoogle Scholar
  90. 90.
    Schwab IR, Reyes M, Isseroff RR. Successful transplantation of bioengineered tissue replacements in patients with ocular surface disease. Cornea. 2000;19(4):421–6.PubMedCrossRefGoogle Scholar
  91. 91.
    Grueterich M, Espana EM, Touhami A, Ti SE, Tseng SC. Phenotypic study of a case with successful transplantation of ex vivo expanded human limbal epithelium for unilateral total limbal stem cell deficiency. Ophthalmology. 2002;109(8):1547–52.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Harkin DG, George KA, Madden PW, Schwab IR, Hutmacher DW, Chirila TV. Silk fibroin in ocular tissue reconstruction. Biomaterials. 2011;32(10):2445–58.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Kundu B, Rajkhowa R, Kundu SC, Wang X. Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev. 2013;65(4):457–70.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Biazar E, Baradaran-Rafii A, Heidari-keshel S, Tavakolifard S. Oriented nanofibrous silk as a natural scaffold for ocular epithelial regeneration. J Biomater Sci Polym Ed. 2015;26(16):1139–51.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Bray LJ, Suzuki S, Harkin DG, Chirila TV. Incorporation of exogenous RGD peptide and inter-species blending as strategies for enhancing human corneal limbal epithelial cell growth on Bombyx mori silk fibroin membranes. J Funct Biomater. 2013;4(2):74–88.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Lawrence BD, Pan Z, Liu A, Kaplan DL, Rosenblatt MI. Human corneal limbal epithelial cell response to varying silk film geometric topography in vitro. Acta Biomater. 2012;8(10):3732–43.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Liu J, Lawrence BD, Liu A, Schwab IR, Oliveira LA, Rosenblatt MI. Silk fibroin as a biomaterial substrate for corneal epithelial cell sheet generation. Invest Ophthalmol Vis Sci. 2012;53(7):4130–8.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Bray LJ, George KA, Ainscough SL, Hutmacher DW, Chirila TV, Harkin DG. Human corneal epithelial equivalents constructed on Bombyx mori silk fibroin membranes. Biomaterials. 2011;32(22):5086–91.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Higa K, Takeshima N, Moro F, Kawakita T, Kawashima M, Demura M, et al. Porous silk fibroin film as a transparent carrier for cultivated corneal epithelial sheets. J Biomater Sci Polym Ed. 2011;22(17):2261–76.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Hogerheyde TA, Suzuki S, Walshe J, Bray LJ, Stephenson SA, Harkin DG, et al. Optimization of corneal epithelial progenitor cell growth on Bombyx mori silk fibroin membranes. Stem Cells Int. 2016;2016:8310127.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Suzuki S, Dawson RA, Chirila TV, Shadforth AM, Hogerheyde TA, Edwards GA, et al. Treatment of silk fibroin with poly(ethylene glycol) for the enhancement of corneal epithelial cell growth. J Funct Biomater. 2015;6(2):345–66.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Funderburgh ML, Du Y, Mann MM, SundarRaj N, Funderburgh JL. PAX6 expression identifies progenitor cells for corneal keratocytes. FASEB J. 2005;19(10):1371–3.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Yamagami S, Yokoo S, Mimura T, Takato T, Araie M, Amano S. Distribution of precursors in human corneal stromal cells and endothelial cells. Ophthalmology. 2007;114(3):433–9.PubMedCrossRefGoogle Scholar
  104. 104.
    Branch MJ, Hashmani K, Dhillon P, Jones DR, Dua HS, Hopkinson A. Mesenchymal stem cells in the human corneal limbal stroma. Invest Ophthalmol Vis Sci. 2012;53(9):5109–16.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Du Y, Sundarraj N, Funderburgh ML, Harvey SA, Birk DE, Funderburgh JL. Secretion and organization of a cornea-like tissue in vitro by stem cells from human corneal stroma. Invest Ophthalmol Vis Sci. 2007;48(11):5038–45.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Lu JM, Zhou ZY, Zhang XR, Li XL, Wang HF, Song XJ. A preliminary study of mesenchymal stem cell-like cells derived from murine corneal stroma. Graefe’s Archive Clin Exp Ophthalmol = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. 2010;248(9):1279–85.CrossRefGoogle Scholar
  107. 107.
    Wu J, Du Y, Mann MM, Funderburgh JL, Wagner WR. Corneal stromal stem cells versus corneal fibroblasts in generating structurally appropriate corneal stromal tissue. Exp Eye Res. 2014;120:71–81.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Hashmani K, Branch MJ, Sidney LE, Dhillon PS, Verma M, McIntosh OD, et al. Characterization of corneal stromal stem cells with the potential for epithelial transdifferentiation. Stem Cell Res Ther. 2013;4(3):75.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Basu S, Hertsenberg AJ, Funderburgh ML, Burrow MK, Mann MM, Du Y, et al. Human limbal biopsy-derived stromal stem cells prevent corneal scarring. Sci Transl Med. 2014;6(266):266ra172.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Sidney LE, Branch MJ, Dua HS, Hopkinson A. Effect of culture medium on propagation and phenotype of corneal stroma-derived stem cells. Cytotherapy. 2015;17(12):1706–22.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Kureshi AK, Funderburgh JL, Daniels JT. Human corneal stromal stem cells exhibit survival capacity following isolation from stored organ-culture corneas. Invest Ophthalmol Vis Sci. 2014;55(11):7583–8.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Kureshi AK, Dziasko M, Funderburgh JL, Daniels JT. Human corneal stromal stem cells support limbal epithelial cells cultured on RAFT tissue equivalents. Sci Rep. 2015;5:16186.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Nakatsu MN, Gonzalez S, Mei H, Deng SX. Human limbal mesenchymal cells support the growth of human corneal epithelial stem/progenitor cells. Invest Ophthalmol Vis Sci. 2014;55(10):6953–9.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Soleimanifar F, Mortazavi Y, Nadri S, Soleimani M. Conjunctiva derived mesenchymal stem cell (CJMSCs) as a potential platform for differentiation into corneal epithelial cells on bioengineered electrospun scaffolds. J Biomed Mater Res A. 2017;105(10):2703–11.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Shen T, Shen J, Zheng QQ, Li QS, Zhao HL, Cui L, et al. Cell viability and extracellular matrix synthesis in a co-culture system of corneal stromal cells and adipose-derived mesenchymal stem cells. Int J Ophthalmol. 2017;10(5):670–8.PubMedPubMedCentralGoogle Scholar
  116. 116.
    Mukhey D, Phillips J, Daniels JT, Kureshi AK. Controlling human corneal stromal stem cell contraction to mediate rapid cell and matrix organization of real architecture for 3-dimensional tissue equivalents. Acta Biomater. 2018;67:229–37.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Hertsenberg AJ, Shojaati G, Funderburgh ML, Mann MM, Du Y, Funderburgh JL. Corneal stromal stem cells reduce corneal scarring by mediating neutrophil infiltration after wounding. PLoS One. 2017;12(3):e0171712.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Pinnamaneni N, Funderburgh JL. Concise review: stem cells in the corneal stroma. Stem Cells. 2012;30(6):1059–63.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Uchida S, Yokoo S, Yanagi Y, Usui T, Yokota C, Mimura T, et al. Sphere formation and expression of neural proteins by human corneal stromal cells in vitro. Invest Ophthalmol Vis Sci. 2005;46(5):1620–5.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Mimura T, Amano S, Yokoo S, Uchida S, Usui T, Yamagami S. Isolation and distribution of rabbit keratocyte precursors. Mol Vis. 2008;14:197–203.PubMedPubMedCentralGoogle Scholar
  121. 121.
    Mimura T, Amano S, Yokoo S, Uchida S, Yamagami S, Usui T, et al. Tissue engineering of corneal stroma with rabbit fibroblast precursors and gelatin hydrogels. Mol Vis. 2008;14:1819–28.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Nucci P, Brancato R, Mets MB, Shevell SK. Normal endothelial cell density range in childhood. Arch Ophthalmol. 1990;108(2):247–8.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Senoo T, Joyce NC. Cell cycle kinetics in corneal endothelium from old and young donors. Invest Ophthalmol Vis Sci. 2000;41(3):660–7.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Joyce NC. Proliferative capacity of the corneal endothelium. Prog Retin Eye Res. 2003;22(3):359–89.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Zhu C, Joyce NC. Proliferative response of corneal endothelial cells from young and older donors. Invest Ophthalmol Vis Sci. 2004;45(6):1743–51.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Murphy C, Alvarado J, Juster R, Maglio M. Prenatal and postnatal cellularity of the human corneal endothelium. A quantitative histologic study. Invest Ophthalmol Vis Sci. 1984;25(3):312–22.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Shearer TR, Chamberlain WD, Fujii A, Azuma M. Selecting Fuchs patients for drug trials involving endothelial cell proliferation. Eur J Ophthalmol. 2016;26(6):536–9.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Guell JL, El Husseiny MA, Manero F, Gris O, Elies D. Historical review and update of surgical treatment for corneal endothelial diseases. Ophthalmol Therapy. 2014;3(1–2):1–15.CrossRefGoogle Scholar
  129. 129.
    Aldave AJ, Han J, Frausto RF. Genetics of the corneal endothelial dystrophies: an evidence-based review. Clin Genet. 2013;84(2):109–19.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Zaniolo K, Bostan C, Rochette Drouin O, Deschambeault A, Perron MC, Brunette I, et al. Culture of human corneal endothelial cells isolated from corneas with Fuchs endothelial corneal dystrophy. Exp Eye Res. 2012;94(1):22–31.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Van den Bogerd B, Dhubhghaill SN, Koppen C, Tassignon MJ, Zakaria N. A review of the evidence for in vivo corneal endothelial regeneration. Surv Ophthalmol. 2018;63:149–65.CrossRefGoogle Scholar
  132. 132.
    Mimura T, Yamagami S, Yokoo S, Araie M, Amano S. Comparison of rabbit corneal endothelial cell precursors in the central and peripheral cornea. Invest Ophthalmol Vis Sci. 2005;46(10):3645–8.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Peh GS, Beuerman RW, Colman A, Tan DT, Mehta JS. Human corneal endothelial cell expansion for corneal endothelium transplantation: an overview. Transplantation. 2011;91(8):811–9.CrossRefGoogle Scholar
  134. 134.
    Li W, Sabater AL, Chen YT, Hayashida Y, Chen SY, He H, et al. A novel method of isolation, preservation, and expansion of human corneal endothelial cells. Invest Ophthalmol Vis Sci. 2007;48(2):614–20.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Engelmann K, Friedl P. Optimization of culture conditions for human corneal endothelial cells. In Vitro Cell Dev Biol. 1989;25(11):1065–72.PubMedCrossRefGoogle Scholar
  136. 136.
    Roy O, Leclerc VB, Bourget JM, Theriault M, Proulx S. Understanding the process of corneal endothelial morphological change in vitro. Invest Ophthalmol Vis Sci. 2015;56(2):1228–37.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Li C, Dong F, Jia Y, Du H, Dong N, Xu Y, et al. Notch signal regulates corneal endothelial-to-mesenchymal transition. Am J Pathol. 2013;183(3):786–95.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Gstraunthaler G. Alternatives to the use of fetal bovine serum: serum-free cell culture. ALTEX. 2003;20(4):275–81.PubMedGoogle Scholar
  139. 139.
    Lee JG, Kay EP. FGF-2-mediated signal transduction during endothelial mesenchymal transformation in corneal endothelial cells. Exp Eye Res. 2006;83(6):1309–16.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Zhu YT, Chen HC, Chen SY, Tseng SC. Nuclear p120 catenin unlocks mitotic block of contact-inhibited human corneal endothelial monolayers without disrupting adherent junctions. J Cell Sci. 2012;125(Pt 15):3636–48.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Zhu YT, Han B, Li F, Chen SY, Tighe S, Zhang S, et al. Knockdown of both p120 catenin and Kaiso promotes expansion of human corneal endothelial monolayers via RhoA-ROCK-noncanonical BMP-NFkappaB pathway. Invest Ophthalmol Vis Sci. 2014;55(3):1509–18.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Lachaud CC, Soria F, Escacena N, Quesada-Hernandez E, Hmadcha A, Alio J, et al. Mesothelial cells: a cellular surrogate for tissue engineering of corneal endothelium. Invest Ophthalmol Vis Sci. 2014;55(9):5967–78.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Glassman AB, Coles WH, Bennett CE. Corneal endothelium: a modified method for cultivation. In Vitro. 1979;15(11):873–6.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Gao Y, Zhou Q, Qu M, Yang L, Wang Y, Shi W. In vitro culture of human fetal corneal endothelial cells. Graefe’s Archive Clin Exp Ophthalmol = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. 2011;249(5):663–9.CrossRefGoogle Scholar
  145. 145.
    Choi JS, Kim EY, Kim MJ, Khan FA, Giegengack M, DE’gostino R Jr, et al. Factors affecting successful isolation of human corneal endothelial cells for clinical use. Cell Transplant. 2014;23(7):845–54.PubMedCrossRefGoogle Scholar
  146. 146.
    Walshe J, Harkin DG. Serial explant culture provides novel insights into the potential location and phenotype of corneal endothelial progenitor cells. Exp Eye Res. 2014;127:9–13.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–89.CrossRefGoogle Scholar
  148. 148.
    Mimura T, Yamagami S, Yokoo S, Usui T, Amano S. Selective isolation of young cells from human corneal endothelium by the sphere-forming assay. Tissue Eng Part C Methods. 2010;16(4):803–12.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Underwood PA, Bennett FA. The effect of extracellular matrix molecules on the in vitro behavior of bovine endothelial cells. Exp Cell Res. 1993;205(2):311–9.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Choi JS, Kim EY, Kim MJ, Giegengack M, Khan FA, Khang G, et al. In vitro evaluation of the interactions between human corneal endothelial cells and extracellular matrix proteins. Biomed Mater. 2013;8(1):014108.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Yamaguchi M, Ebihara N, Shima N, Kimoto M, Funaki T, Yokoo S, et al. Adhesion, migration, and proliferation of cultured human corneal endothelial cells by laminin-5. Invest Ophthalmol Vis Sci. 2011;52(2):679–84.PubMedCrossRefGoogle Scholar
  152. 152.
    Kim EY, Tripathy N, Cho SA, Joo CK, Lee D, Khang G. Bioengineered neo-corneal endothelium using collagen type-I coated silk fibroin film. Colloids Surf B Biointerfaces. 2015;136:394–401.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Ishino Y, Sano Y, Nakamura T, Connon CJ, Rigby H, Fullwood NJ, et al. Amniotic membrane as a carrier for cultivated human corneal endothelial cell transplantation. Invest Ophthalmol Vis Sci. 2004;45(3):800–6.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Navaratnam J, Utheim TP, Rajasekhar VK, Shahdadfar A. Substrates for expansion of corneal endothelial cells towards bioengineering of human corneal endothelium. J Funct Biomater. 2015;6(3):917–45.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Yoeruek E, Saygili O, Spitzer MS, Tatar O, Bartz-Schmidt KU, Szurman P. Human anterior lens capsule as carrier matrix for cultivated human corneal endothelial cells. Cornea. 2009;28(4):416–20.PubMedCrossRefGoogle Scholar
  156. 156.
    Sha X, Liu Z, Song L, Wang Z, Liang X. Human amniotic epithelial cell niche enhances the functional properties of human corneal endothelial cells via inhibiting P53-survivin-mitochondria axis. Exp Eye Res. 2013;116:36–46.PubMedCrossRefGoogle Scholar
  157. 157.
    Zhu MY, Yao QK, Chen JZ, Shao CY, Yan CX, Ni N, et al. Effects of corneal stromal cell- and bone marrow-derived endothelial progenitor cell-conditioned media on the proliferation of corneal endothelial cells. Int J Ophthalmol. 2016;9(3):332–9.PubMedPubMedCentralGoogle Scholar
  158. 158.
    Nakahara M, Okumura N, Kay EP, Hagiya M, Imagawa K, Hosoda Y, et al. Corneal endothelial expansion promoted by human bone marrow mesenchymal stem cell-derived conditioned medium. PLoS One. 2013;8(7):e69009.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Figueira EC, Di Girolamo N, Coroneo MT, Wakefield D. The phenotype of limbal epithelial stem cells. Invest Ophthalmol Vis Sci. 2007;48(1):144–56.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Christian Claude Lachaud
    • 1
  • Abdelkrim Hmadcha
    • 1
  • Bernat Soria
    • 1
    • 2
    Email author
  1. 1.Department of Cell Regeneration and Advanced TherapiesAndalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo Olavide-University of Seville-CSICSevilleSpain
  2. 2.Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)MadridSpain

Personalised recommendations