Stem Cells: Concept, Properties, and Characterization

  • Natalia Escacena-Acosta
  • Javier Lopez-Beas
  • Christian Claude Lachaud
  • Mehrdad Vakilian
  • Juan Rigoberto Tejedo
  • Vivian Capilla-González
  • Francisco Javier Bedoya
  • Franz Martin
  • Abdelkrim HmadchaEmail author
  • Bernat SoriaEmail author
Part of the Essentials in Ophthalmology book series (ESSENTIALS)


Recent research has shown that the most effective system of repair of the human body is represented by stem cells. By definition, stem cells are able to divide and make copies of themselves indefinitely (self-renewal). In turn, under certain physiological conditions, they give rise to different cell types (differentiation). These characteristics make them indispensable both to replace the cells of the body that have become damaged and have been lost and to build the body itself during development. This chapter highlights general concepts about their biology, manipulation and culture, safety, and regulatory framework. Advances and knowledge in these areas are essential to achieve successful cell-based therapeutic applications.


Stem cells Self-renewal Differentiation Immunomodulation Advanced therapies Stem cell culture Cancer stem cells 



Authors are supported by the nonprofit Fundación Progreso y Salud, Consejería de Salud, Junta de Andalucía; FEDER cofunded grants from Instituto de Salud Carlos III and the Ministry of Economy, Industry and Competitiveness (Red TerCel: RD12/0019/0028 and RD16/00259; CIBERDEM: CB07/08/0006; PI14/01015, PI16/00259, PI17/02104, and CD16/00118); and Junta de Andalucía (PAI-BIO311, CTS-576, CTS 11-727, PI-0109-2014, PI0007/2016, and PI0272/2017). CIBERDEM is an initiative of the Instituto de Salud Carlos III.

Competing Interests

The authors declare no conflict of interest.

Informed Consent

No human studies were carried out by the authors for this article.

Animal Studies

No animal studies were carried out by the authors for this article.


  1. 1.
    Hmadcha A, Domínguez-Bendala J, Wakeman J, et al. The immune boundaries for stem cell based therapies: problems and prospective solutions. J Cell Mol Med. 2009;13(8 A):1464–75. Scholar
  2. 2.
    Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.CrossRefGoogle Scholar
  3. 3.
    Boyer LA, Lee TI, Cole MF, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005;122(6):947–56. Scholar
  4. 4.
    Zhang M, Leitch HG, Tang WWC, et al. Esrrb complementation rescues development of Nanog-null germ cells. Cell Rep. 2018;22(2):332–9. Scholar
  5. 5.
    Schwarz BA, Bar-Nur O, Silva JCR, Hochedlinger K. Nanog is dispensable for the generation of induced pluripotent stem cells. Curr Biol. 2014;24(3):347–50. Scholar
  6. 6.
    Hassani S-N, Totonchi M, Gourabi H, Schöler HR, Baharvand H. Signaling roadmap modulating naive and primed pluripotency. Stem Cells Dev. 2014;23(3):193–208. Scholar
  7. 7.
    Vallier L, Alexander M, Pedersen RA. Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J Cell Sci. 2005;118.(Pt 19:4495–509. Scholar
  8. 8.
    Ying QL, Nichols J, Chambers I, Smith A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell. 2003;115(3):281–92.CrossRefGoogle Scholar
  9. 9.
    Soria B, Montanya E, Martín F, Hmadcha A. A role for the host in the roadmap to diabetes stem cell therapy. Diabetes. 2016;65(5):1155–7. Scholar
  10. 10.
    Sasaki H, Wada H, Baghdadi M, et al. New immunosuppressive cell therapy to prolong survival of induced pluripotent stem cell–derived allografts. Transplantation. 2015;99(11):2301–10. Scholar
  11. 11.
    Swijnenburg R-J, Schrepfer S, Govaert JA, et al. Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts. Proc Natl Acad Sci U S A. 2008;105(35):12991–6. Scholar
  12. 12.
    Pearl JI, Lee AS, Leveson-Gower DB, et al. Short-term immunosuppression promotes engraftment of embryonic and induced pluripotent stem cells. Cell Stem Cell. 2011;8(3):309–17. Scholar
  13. 13.
    Lachaud CC, Rodriguez-Campins B, Hmadcha A, Soria B. Use of mesothelial cells and biological matrices for tissue engineering of simple epithelium surrogates. Front Bioeng Biotechnol. 2015;3:117. Scholar
  14. 14.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.CrossRefGoogle Scholar
  15. 15.
    Adewumi O, Aflatoonian B, Ahrlund-Richter L, et al. Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat Biotechnol. 2007;25(7):803–16. Scholar
  16. 16.
    Kannagi R, Cochran NA, Ishigami F, et al. Stage-specific embryonic antigens (SSEA-3 and -4) are epitopes of a unique globo-series ganglioside isolated from human teratocarcinoma cells. EMBO J. 1983;2(12):2355–61.CrossRefGoogle Scholar
  17. 17.
    Andrews PW, Banting G, Damjanov I, Arnaud D, Avner P. Three monoclonal antibodies defining distinct differentiation antigens associated with different high molecular weight polypeptides on the surface of human embryonal carcinoma cells. Hybridoma. 1984;3(4):347–61.CrossRefGoogle Scholar
  18. 18.
    Štefková K, Procházková J, Pacherník J. Alkaline phosphatase in stem cells. Stem Cells Int. 2015;2015:628368. Scholar
  19. 19.
    Hiyama E, Hiyama K. Telomere and telomerase in stem cells. Br J Cancer. 2007;96(7):1020–4. Scholar
  20. 20.
    Marión RM, Blasco MA. Telomeres and telomerase in adult stem cells and pluripotent embryonic stem cells. Adv Exp Med Biol. 2010;695:118–31. Scholar
  21. 21.
    Nichols J, Zevnik B, Anastassiadis K, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct 4. Cell. 1998;95(3):379–91.CrossRefGoogle Scholar
  22. 22.
    Lee KC, Wong WK, Feng B. Decoding the pluripotency network: the emergence of new transcription factors. Biomedicine. 2013;1(1):49–78. Scholar
  23. 23.
    Ghosal S, Das S, Chakrabarti J. Long noncoding RNAs: new players in the molecular mechanism for maintenance and differentiation of pluripotent stem cells. Stem Cells Dev. 2013;22(16):2240–53. Scholar
  24. 24.
    Mathieu J, Ruohola-Baker H. Regulation of stem cell populations by microRNAs. Adv Exp Med Biol. 2013;786:329–51. Scholar
  25. 25.
    Judson RL, Babiarz JE, Venere M, Blelloch R. Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol. 2009;27(5):459–61. Scholar
  26. 26.
    Zhang Z, Hong Y, Xiang D, et al. MicroRNA-302/367 cluster governs hESC self-renewal by dually regulating cell cycle and apoptosis pathways. Stem Cell Rep. 2015;4(4):645–57. Scholar
  27. 27.
    Becker KA, Ghule PN, Therrien JA, et al. Self-renewal of human embryonic stem cells is supported by a shortened G1 cell cycle phase. J Cell Physiol. 2006;209(3):883–93. Scholar
  28. 28.
    Wang Y, Baskerville S, Shenoy A, Babiarz JE, Baehner L, Blelloch R. Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nat Genet. 2008;40(12):1478–83. Scholar
  29. 29.
    Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014;15(1):7–21. Scholar
  30. 30.
    Chase LG, Lakshmipathy U, Solchaga LA, Rao MS, Vemuri MC. A novel serum-free medium for the expansion of human mesenchymal stem cells. Stem Cell Res Ther. 2010;1(1):8.CrossRefGoogle Scholar
  31. 31.
    Ishikawa I, Sawada R, Kato Y, Tsuji K, Shao J, Yamada T, et al. Effectivity of the novel serum-free medium STK2 for proliferating human mesenchymal stem cells. Yakugaku Zasshi. 2009;129(3):381–4.CrossRefGoogle Scholar
  32. 32.
    Al-Saqi SH, Saliem M, Quezada HC, Ekblad A, Jonasson AF, Hovatta O, et al. Defined serum- and xeno-free cryopreservation of mesenchymal stem cells. Cell Tissue Bank. 2015;16(2):181–93.CrossRefGoogle Scholar
  33. 33.
    Skog M, Muhonen V, Nystedt J, Narcisi R, Kontturi LS, Urtti A, et al. Xeno-free chondrogenesis of bone marrow mesenchymal stromal cells: towards clinical-grade chondrocyte production. Cytotechnology. 2015;67(5):905–19.CrossRefGoogle Scholar
  34. 34.
    Iwamoto T, Terai S, Hisanaga T, Takami T, Yamamoto N, Watanabe S, et al. Bone-marrow-derived cells cultured in serum-free medium reduce liver fibrosis and improve liver function in carbon-tetrachloride-treated cirrhotic mice. Cell Tissue Res. 2013;351(3):487–95.CrossRefGoogle Scholar
  35. 35.
    Escacena N, Quesada-Hernández E, Capilla-Gonzalez V, Soria B, Hmadcha A. Bottlenecks in the efficient use of advanced therapy medicinal products based on mesenchymal stromal cells. Stem Cells Int. 2015;2015:895714. Scholar
  36. 36.
    Gálvez P, Clares B, Hmadcha A, Ruiz A, Soria B. Development of a cell-based medicinal product: regulatory structures in the European Union. Br Med Bull. 2013;105:85–105. Scholar
  37. 37.
    DIRECTIVE 2001/83/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 6 November 2001 on the Communitycode relating to medicinal products for human use. Off J Eur Communities. 2001;L 311:67–128.
  38. 38.
    Directive 2012/26/EU of the European Parliament and of the Council of 25 October 2012 amending directive 2001/83/EC as regards pharmacovigilance. Off J Eur Communities. 2012;L 299:1–4.
  39. 39.
    DIRECTIVE 2001/20/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 4 April 2001 on the approximation of the laws, regulations and administrative provisions of the Member States relating to the implementation of good clinical practice in the conduct of clinical trials on medicinal products for human use. Off J Eur Communities. 2001;L 121:34–44.
  40. 40.
    REGULATION (EU) No 536/2014 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 16 April 2014 on clinical trials on medicinal products for human use, and repealing Directive 2001/20/EC. Off J Eur Communities. 2014;L 158:1–76.
  41. 41.
    REGULATION (EC) No 1394/2007 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 13 November 2007 on advanced therapy medicinal products and amending Directive 2001/83/EC and Regulation (EC) No 726/2004. Off J Eur Communities. 2007;L 324:121–137.
  42. 42.
    COMMISSION DIRECTIVE 2009/120/EC of 14 September 2009 amending Directive 2001/83/EC of the European Parliament and of the Council on the Community code relating to medicinal products for human use as regards advanced therapy medicinal products. Off J Eur Communities. 2009;L 242:3–12.
  43. 43.
    Pellegrini G, Traverso CE, Franzi AT, Zingirian M, Cancedda R, De Luca M. Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet. 1997;349(9057):990–3. Scholar
  44. 44.
    Rama P, Matuska S, Paganoni G, Spinelli A, De Luca M, Pellegrini G. Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med. 2010;363(2):147–55. Scholar
  45. 45.
    Clarke MF, Dick JE, Dirks PB, et al. Cancer stem cells--perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 2006;66(19):9339–44. Scholar
  46. 46.
    Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367(6464):645–8. Scholar
  47. 47.
    Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730–7.CrossRefGoogle Scholar
  48. 48.
    Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008;8(10):755–68. Scholar
  49. 49.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983–8. Scholar
  50. 50.
    O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445(7123):106–10. Scholar
  51. 51.
    Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature. 2004;432(7015):396–401. Scholar
  52. 52.
    Li C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67(3):1030–7. Scholar
  53. 53.
    Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005;65(23):10946–51. Scholar
  54. 54.
    Blum B, Benvenisty N. The tumorigenicity of human embryonic stem cells. Adv Cancer Res. 2008;100:133–58. Scholar
  55. 55.
    Ben-David U, Benvenisty N. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer. 2011;11(4):268–77. Scholar
  56. 56.
    Stevens LC. Experimental production of testicular teratomas in mice. Proc Natl Acad Sci U S A. 1964;52:654–61.CrossRefGoogle Scholar
  57. 57.
    Stevens LC. Origin of testicular teratomas from primordial germ cells in mice. J Natl Cancer Inst. 1967;38(4):549–52.PubMedGoogle Scholar
  58. 58.
    Lee AS, Tang C, Rao MS, Weissman IL, Wu JC. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med. 2013;19(8):998–1004. Scholar
  59. 59.
    Nori S, Okada Y, Nishimura S, et al. Long-term safety issues of iPSC-based cell therapy in a spinal cord injury model: oncogenic transformation with epithelial-mesenchymal transition. Stem Cell Rep. 2015;4(3):360–73. Scholar
  60. 60.
    Jackson EL, Garcia-Verdugo JM, Gil-Perotin S, et al. PDGFR alpha-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron. 2006;51(2):187–99. Scholar
  61. 61.
    Chen J, Li Y, Yu T-S, et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature. 2012;488(7412):522–6. Scholar
  62. 62.
    Tung P-Y, Knoepfler PS. Epigenetic mechanisms of tumorigenicity manifesting in stem cells. Oncogene. 2015;34(18):2288–96. Scholar
  63. 63.
    Blokzijl F, de Ligt J, Jager M, et al. Tissue-specific mutation accumulation in human adult stem cells during life. Nature. 2016;538(7624):260–4. Scholar
  64. 64.
    Calvanese V, Horrillo A, Hmadcha A, et al. Cancer genes hypermethylated in human embryonic stem cells. PLoS One. 2008;3(9):e3294. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Natalia Escacena-Acosta
    • 1
  • Javier Lopez-Beas
    • 1
  • Christian Claude Lachaud
    • 1
  • Mehrdad Vakilian
    • 1
  • Juan Rigoberto Tejedo
    • 1
    • 2
    • 3
  • Vivian Capilla-González
    • 1
  • Francisco Javier Bedoya
    • 1
    • 2
    • 3
  • Franz Martin
    • 1
    • 2
    • 3
  • Abdelkrim Hmadcha
    • 1
    Email author
  • Bernat Soria
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Cell Regeneration and Advanced TherapiesAndalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo Olavide-University of Seville-CSICSevilleSpain
  2. 2.Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)MadridSpain
  3. 3.University Pablo de OlavideSevilleSpain

Personalised recommendations