Advertisement

Dysfunctional Corneal Endothelium: Delivery of Cell Therapy

  • Stephen Wahlig
  • Gary Swee-Lim Peh
  • Matthew Lovatt
  • Jodhbir S. Mehta
Chapter
Part of the Essentials in Ophthalmology book series (ESSENTIALS)

Abstract

Cellular therapies are an emerging alternative to allogeneic corneal transplantation for endothelial dysfunction. While allogeneic transplantation is limited by donor tissue supply, current culture systems are able to produce sufficient cells from a single donor cornea to treat multiple patients. A variety of delivery systems have been developed to harness the therapeutic potential of these cultured cells. This chapter outlines these delivery techniques, including use of single cell monolayers taken directly from culture plates, implantation of cell-seeded scaffolds, both biologic and synthetic, and injection of cells into the anterior chamber.

Keywords

Cell therapy Cornea Endothelium Animal model Delivery Keratoplasty Cell injection 

Notes

Compliance Statements

J. S. Mehta, M. Lovatt, G. Peh, and S. Wahlig declare that they have no conflict of interest. All procedures performed by the authors followed and were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study. All institutional and national guidelines for the care and use of laboratory animals were followed.

Conflict of Interest: No conflicting relationship exists for any author.

Financial disclosure: No financial disclosures.

References

  1. 1.
    Tan DT, Dart JK, Holland EJ, et al. Corneal transplantation. Lancet. 2012;379(9827):1749–61.CrossRefGoogle Scholar
  2. 2.
    Ang M, Mehta JS, Lim F, et al. Endothelial cell loss and graft survival after Descemet’s stripping automated endothelial keratoplasty and penetrating keratoplasty. Ophthalmology. 2012;119(11):2239–44.PubMedCrossRefGoogle Scholar
  3. 3.
    Price MO, Fairchild KM, Price DA, et al. Descemet’s stripping endothelial keratoplasty five-year graft survival and endothelial cell loss. Ophthalmology. 2011;118(4):725–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Guerra FP, Anshu A, Price MO, et al. Descemet’s membrane endothelial keratoplasty: prospective study of 1-year visual outcomes, graft survival, and endothelial cell loss. Ophthalmology. 2011;118(12):2368–73.PubMedCrossRefGoogle Scholar
  5. 5.
    Ang M, Wilkins MR, Mehta JS, et al. Descemet membrane endothelial keratoplasty. Br J Ophthalmol. 2016b;100(1):15–21.PubMedCrossRefGoogle Scholar
  6. 6.
    Eye Bank Association of America. 2010; 2009 Eye Banking Statistical Report.Google Scholar
  7. 7.
    Eye Bank Association of America. 2016; 2015 Eye Banking Statistical Report.Google Scholar
  8. 8.
    Gain P, Jullienne R, He Z, et al. Global survey of corneal transplantation and eye banking. JAMA Ophthalmol. 2016;134(2):167–73.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Baum JL, Niedra R, Davis C, et al. Mass culture of human corneal endothelial cells. Arch Ophthalmol. 1979;97(6):1136–40.CrossRefGoogle Scholar
  10. 10.
    Peh GS, Beuerman RW, Colman A, et al. Human corneal endothelial cell expansion for corneal endothelium transplantation: an overview. Transplantation. 2011;91(8):811–9.CrossRefGoogle Scholar
  11. 11.
    Honda N, Mimura T, Usui T, et al. Descemet stripping automated endothelial keratoplasty using cultured corneal endothelial cells in a rabbit model. Arch Ophthalmol. 2009;127(10):1321–6.PubMedGoogle Scholar
  12. 12.
    Okumura N, Sakamoto Y, Fujii K, et al. Rho kinase inhibitor enables cell-based therapy for corneal endothelial dysfunction. Sci Rep. 2016b;6:26113.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Koizumi N, Sakamoto Y, Okumura N, et al. Cultivated corneal endothelial cell sheet transplantation in a primate model. Invest Ophthalmol Vis Sci. 2007;48(10):4519–26.CrossRefGoogle Scholar
  14. 14.
    Koizumi N, Sakamoto Y, Okumura N, et al. Cultivated corneal endothelial transplantation in a primate: possible future clinical application in corneal endothelial regenerative medicine. Cornea. 2008;27(Suppl 1):S48–55.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Maurice DM, Giardini AA. Swelling of the cornea in vivo after the destruction of its limiting layers. Br J Ophthalmol. 1951;35(12):791–7.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Han SB, Ang H, Balehosur D, et al. A mouse model of corneal endothelial decompensation using cryoinjury. Mol Vis. 2013;19:1222–30.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Wu M, Hu ZL, Sun XM, et al. In vivo confocal microscopic evaluation of corneal endothelial dysfunction induced by phacoemulcification in rhesus monkey models. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2016;38(1):42–8.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Zhang W, Hu Y, Lu L, et al. Rabbit model of corneal endothelial injury established using the Nd: YAG laser. Cornea. 2017;36(10):1274–81.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Ang M, Konstantopoulos A, Goh G, et al. Evaluation of a micro-optical coherence tomography for the corneal endothelium in an animal model. Sci Rep. 2016a;6:29769.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Kim do K, Sim BR, Khang G. Nature-derived Aloe Vera gel blended silk fibroin film scaffolds for cornea endothelial cell regeneration and transplantation. ACS Appl Mater Interfaces. 2016;8(24):15160–8.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Mimura T, Shimomura N, Usui T, et al. Magnetic attraction of iron-endocytosed corneal endothelial cells to Descemet’s membrane. Exp Eye Res. 2003;76(6):745–51.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Mimura T, Yamagami S, Usui T, et al. Long-term outcome of iron-endocytosing cultured corneal endothelial cell transplantation with magnetic attraction. Exp Eye Res. 2005a;80(2):149–57.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Niu G, Choi JS, Wang Z, et al. Heparin-modified gelatin scaffolds for human corneal endothelial cell transplantation. Biomaterials. 2014;35(13):4005–14.CrossRefGoogle Scholar
  24. 24.
    Okumura N, Koizumi N, Ueno M, et al. ROCK inhibitor converts corneal endothelial cells into a phenotype capable of regenerating in vivo endothelial tissue. Am J Pathol. 2012;181(1):268–77.CrossRefGoogle Scholar
  25. 25.
    Zhou Y, Wu Z, Ge J, et al. Development and characterization of acellular porcine corneal matrix using sodium dodecylsulfate. Cornea. 2011;30(1):73–82.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Tuft SJ, Williams KA, Coster DJ. Endothelial repair in the rat cornea. Invest Ophthalmol Vis Sci. 1986;27(8):1199–204.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Werner L, Chew J, Mamalis N. Experimental evaluation of ophthalmic devices and solutions using rabbit models. Vet Ophthalmol. 2006;9(5):281–91.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Van Horn DL, Sendele DD, Seideman S, et al. Regenerative capacity of the corneal endothelium in rabbit and cat. Invest Ophthalmol Vis Sci. 1977;16(7):597–613.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Kimoto M, Shima N, Yamaguchi M, et al. Development of a bioengineered corneal endothelial cell sheet to fit the corneal curvature. Invest Ophthalmol Vis Sci. 2014;55(4):2337–43.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Bostan C, Theriault M, Forget KJ, et al. In vivo functionality of a corneal endothelium transplanted by cell-injection therapy in a feline model. Invest Ophthalmol Vis Sci. 2016;57(4):1620–34.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Van Horn DL, Hyndiuk RA. Endothelial wound repair in primate cornea. Exp Eye Res. 1975;21(2):113–24.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Hsiue GH, Lai JY, Chen KH, et al. A novel strategy for corneal endothelial reconstruction with a bioengineered cell sheet. Transplantation. 2006;81(3):473–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Sumide T, Nishida K, Yamato M, et al. Functional human corneal endothelial cell sheets harvested from temperature-responsive culture surfaces. FASEB J. 2006;20(2):392–4.PubMedCrossRefGoogle Scholar
  34. 34.
    Madathil BK, Kumar PR, Kumary TV. N-isopropylacrylamide-co-glycidylmethacrylate as a thermoresponsive substrate for corneal endothelial cell sheet engineering. Biomed Res In. 2014;2014:450672.CrossRefGoogle Scholar
  35. 35.
    Teichmann J, Valtink M, Gramm S, et al. Human corneal endothelial cell sheets for transplantation: thermo-responsive cell culture carriers to meet cell-specific requirements. Acta Biomater. 2013;9(2):5031–9.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Tsaousis KT, Kopsachilis N, Tsinopoulos IT, et al. In vitro study of the deturgescence ability of cultivated human corneal endothelial cells. Cornea. 2016;35(5):669–72.PubMedCrossRefGoogle Scholar
  37. 37.
    Lai JY, Lu PL, Chen KH, et al. Effect of charge and molecular weight on the functionality of gelatin carriers for corneal endothelial cell therapy. Biomacromolecules. 2006;7(6):1836–44.PubMedCrossRefGoogle Scholar
  38. 38.
    Lai JY, Li YT. Functional assessment of cross-linked porous gelatin hydrogels for bioengineered cell sheet carriers. Biomacromolecules. 2010;11(5):1387–97.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Lai JY, Ma DH, Lai MH, et al. Characterization of cross-linked porous gelatin carriers and their interaction with corneal endothelium: biopolymer concentration effect. PLoS One. 2013;8(1):e54058.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Dua HS, Azuara-Blanco A. Amniotic membrane transplantation. Br J Ophthalmol. 1999;83(6):748–52.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Fan T, Ma X, Zhao J, et al. Transplantation of tissue-engineered human corneal endothelium in cat models. Mol Vis. 2013;19:400–7.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Ishino Y, Sano Y, Nakamura T, et al. Amniotic membrane as a carrier for cultivated human corneal endothelial cell transplantation. Invest Ophthalmol Vis Sci. 2004;45(3):800–6.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Zhang C, Nie X, Hu D, et al. Survival and integration of tissue-engineered corneal stroma in a model of corneal ulcer. Cell Tissue Res. 2007;329(2):249–57.PubMedCrossRefGoogle Scholar
  44. 44.
    Bayyoud T, Thaler S, Hofmann J, et al. Decellularized bovine corneal posterior lamellae as carrier matrix for cultivated human corneal endothelial cells. Curr Eye Res. 2012;37(3):179–86.PubMedCrossRefGoogle Scholar
  45. 45.
    Du L, Wu X, Pang K, et al. Histological evaluation and biomechanical characterisation of an acellular porcine cornea scaffold. Br J Ophthalmol. 2011;95(3):410–4.PubMedCrossRefGoogle Scholar
  46. 46.
    Fu Y, Fan X, Chen P, et al. Reconstruction of a tissue-engineered cornea with porcine corneal acellular matrix as the scaffold. Cells Tissues Organs. 2010;191(3):193–202.PubMedCrossRefGoogle Scholar
  47. 47.
    Ju C, Gao L, Wu X, et al. A human corneal endothelium equivalent constructed with acellular porcine corneal matrix. Indian J Med Res. 2012;135(6):887–94.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Yoeruek E, Bayyoud T, Maurus C, et al. Decellularization of porcine corneas and repopulation with human corneal cells for tissue-engineered xenografts. Acta Ophthalmol. 2012;90(2):e125–31.PubMedCrossRefGoogle Scholar
  49. 49.
    Amano S, Shimomura N, Yokoo S, et al. Decellularizing corneal stroma using N2 gas. Mol Vis. 2008;14:878–82.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Sasaki S, Funamoto S, Hashimoto Y, et al. In vivo evaluation of a novel scaffold for artificial corneas prepared by using ultrahigh hydrostatic pressure to decellularize porcine corneas. Mol Vis. 2009;15:2022–8.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Pang K. Differentiation of human embryonic stem cells to corneal epithelium and endothelium like cells for cornea replacement construction. Invest Ophth Vis Sci. 2015;56:5831.CrossRefGoogle Scholar
  52. 52.
    Bloomfield P, Wheatley DJ, Prescott RJ, et al. Twelve-year comparison of a Bjork-Shiley mechanical heart valve with porcine bioprostheses. N Engl J Med. 1991;324(9):573–9.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Booth C, Korossis SA, Wilcox HE, et al. Tissue engineering of cardiac valve prostheses I: development and histological characterization of an acellular porcine scaffold. J Heart Valve Dis. 2002;11(4):457–62.PubMedPubMedCentralGoogle Scholar
  54. 54.
    He Z, Forest F, Bernard A, et al. Cutting and decellularization of multiple corneal stromal lamellae for the bioengineering of endothelial grafts. Invest Ophthalmol Vis Sci. 2016;57(15):6639–51.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Peh GSL, Ang HP, Lwin CN, et al. Regulatory compliant tissue-engineered human corneal endothelial grafts restore corneal function of rabbits with bullous keratopathy. Sci Rep. 2017;7(1):14149.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Jumblatt MM, Maurice DM, Schwartz BD. A gelatin membrane substrate for the transplantation of tissue cultured cells. Transplantation. 1980;29(6):498–9.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Mohay J, Lange TM, Soltau JB, et al. Transplantation of corneal endothelial cells using a cell carrier device. Cornea. 1994;13(2):173–82.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Lu PL, Lai JY, Ma DH, et al. Carbodiimide cross-linked hyaluronic acid hydrogels as cell sheet delivery vehicles: characterization and interaction with corneal endothelial cells. J Biomater Sci Polym Ed. 2008;19(1):1–18.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Watanabe R, Hayashi R, Kimura Y, et al. A novel gelatin hydrogel carrier sheet for corneal endothelial transplantation. Tissue Eng Part A. 2011;17(17–18):2213–9.CrossRefGoogle Scholar
  60. 60.
    Kabosova A, Azar DT, Bannikov GA, et al. Compositional differences between infant and adult human corneal basement membranes. Invest Ophthalmol Vis Sci. 2007;48(11):4989–99.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Merrett K, Fagerholm P, McLaughlin CR, et al. Tissue-engineered recombinant human collagen-based corneal substitutes for implantation: performance of type I versus type III collagen. Invest Ophthalmol Vis Sci. 2008;49(9):3887–94.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Fagerholm P, Lagali NS, Ong JA, et al. Stable corneal regeneration four years after implantation of a cell-free recombinant human collagen scaffold. Biomaterials. 2014;35(8):2420–7.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Levis HJ, Peh GS, Toh KP, et al. Plastic compressed collagen as a novel carrier for expanded human corneal endothelial cells for transplantation. PLoS One. 2012;7(11):e50993.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Hayes S, Lewis P, Islam MM, et al. The structural and optical properties of type III human collagen biosynthetic corneal substitutes. Acta Biomater. 2015;25:121–30.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Kim EY, Tripathy N, Cho SA, et al. Bioengineered neo-corneal endothelium using collagen type-I coated silk fibroin film. Colloids Surf B Biointerfaces. 2015;136:394–401.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Madden PW, Lai JN, George KA, et al. Human corneal endothelial cell growth on a silk fibroin membrane. Biomaterials. 2011;32(17):4076–84.CrossRefGoogle Scholar
  67. 67.
    Chen J, Yan C, Zhu M, et al. Electrospun nanofibrous SF/P(LLA-CL) membrane: a potential substratum for endothelial keratoplasty. Int J Nanomedicine. 2015;10:3337–50.PubMedPubMedCentralGoogle Scholar
  68. 68.
    McLaughlin CR, Acosta MC, Luna C, et al. Regeneration of functional nerves within full thickness collagen-phosphorylcholine corneal substitute implants in guinea pigs. Biomaterials. 2010;31(10):2770–8.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Ozcelik B, Brown KD, Blencowe A, et al. Ultrathin chitosan-poly(ethylene glycol) hydrogel films for corneal tissue engineering. Acta Biomater. 2013;9(5):6594–605.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Wang TJ, Wang IJ, Chen S, et al. The phenotypic response of bovine corneal endothelial cells on chitosan/polycaprolactone blends. Colloids Surf B Biointerfaces. 2012a;90:236–43.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Wang TJ, Wang IJ, Lu JN, et al. Novel chitosan-polycaprolactone blends as potential scaffold and carrier for corneal endothelial transplantation. Mol Vis. 2012b;18:255–64.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Wang TJ, Wang IJ, Hu FR, et al. Applications of biomaterials in corneal endothelial tissue engineering. Cornea. 2016;35(Suppl 1):S25–30.PubMedCrossRefGoogle Scholar
  73. 73.
    Salehi S, Bahners T, Gutmann J, et al. Characterization of structural, mechanical and nano-mechanical properties of electrospun PGS/PCL fibers. RSC Adv. 2014a;4(33):16951–7.CrossRefGoogle Scholar
  74. 74.
    Salehi S, Fathi M, Javanmard SH, et al. Generation of PGS/PCL blend nanofibrous scaffolds mimicking corneal stroma structure. Macromol Mater Eng. 2014b;299(4):455–69.CrossRefGoogle Scholar
  75. 75.
    Salehi S, Czugala M, Stafiej P, et al. Poly (glycerol sebacate)-poly (epsilon-caprolactone) blend nanofibrous scaffold as intrinsic bio- and immunocompatible system for corneal repair. Acta Biomater. 2017;50:370–80.PubMedCrossRefGoogle Scholar
  76. 76.
    Rizwan M, Peh GS, Ang HP, et al. Sequentially-crosslinked bioactive hydrogels as nano-patterned substrates with customizable stiffness and degradation for corneal tissue engineering applications. Biomaterials. 2017;120:139–54.PubMedCrossRefGoogle Scholar
  77. 77.
    McCulley JP, Maurice DM, Schwartz BD. Corneal endothelial transplantation. Ophthalmology. 1980;87(3):194–201.PubMedCrossRefGoogle Scholar
  78. 78.
    Patel SV, Bachman LA, Hann CR, et al. Human corneal endothelial cell transplantation in a human ex vivo model. Invest Ophthalmol Vis Sci. 2009;50(5):2123–31.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Mimura T, Yokoo S, Araie M, et al. Treatment of rabbit bullous keratopathy with precursors derived from cultured human corneal endothelium. Invest Ophthalmol Vis Sci. 2005b;46(10):3637–44.PubMedCrossRefGoogle Scholar
  80. 80.
    Mimura T, Yamagami S, Usui T, et al. Necessary prone position time for human corneal endothelial precursor transplantation in a rabbit endothelial deficiency model. Curr Eye Res. 2007;32(7–8):617–23.PubMedCrossRefGoogle Scholar
  81. 81.
    Clement O, Siauve N, Cuenod CA, et al. Liver imaging with ferumoxides (Feridex): fundamentals, controversies, and practical aspects. Top Magn Reson Imaging. 1998;9(3):167–82.PubMedCrossRefGoogle Scholar
  82. 82.
    Wang YX, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol. 2001;11(11):2319–31.PubMedCrossRefGoogle Scholar
  83. 83.
    Moysidis SN, Alvarez-Delfin K, Peschansky VJ, et al. Magnetic field-guided cell delivery with nanoparticle-loaded human corneal endothelial cells. Nanomedicine. 2015;11(3):499–509.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Bi YL, Wu MF, Lu LX, et al. Functions of corneal endothelial cells do not change after uptake of superparamagnetic iron oxide nanoparticles. Mol Med Rep. 2013;7(6):1767–72.PubMedCrossRefGoogle Scholar
  85. 85.
    Okumura N, Ueno M, Koizumi N, et al. Enhancement on primate corneal endothelial cell survival in vitro by a ROCK inhibitor. Invest Ophthalmol Vis Sci. 2009;50(8):3680–7.CrossRefGoogle Scholar
  86. 86.
    Garnock-Jones KP. Ripasudil: first global approval. Drugs. 2014;74(18):2211–5.PubMedCrossRefGoogle Scholar
  87. 87.
    Okumura N, Kakutani K, Inoue R, et al. Generation and feasibility assessment of a new vehicle for cell-based therapy for treating corneal endothelial dysfunction. PLoS One. 2016a;11(6):e0158427.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Adamis AP, Filatov V, Tripathi BJ, et al. Fuchs’ endothelial dystrophy of the cornea. Surv Ophthalmol. 1993;38(2):149–68.PubMedCrossRefGoogle Scholar
  89. 89.
    Rizwan M, Peh GS, Adnan K, et al. In vitro topographical model of Fuchs dystrophy for evaluation of corneal endothelial cell monolayer formation. Adv Healthc Mater. 2016;5(22):2896–910.PubMedCrossRefGoogle Scholar
  90. 90.
    Lange TM, Wood TO, McLaughlin BJ. Corneal endothelial cell transplantation using Descemet’s membrane as a carrier. J Cataract Refract Surg. 1993;19(2):232–5.CrossRefGoogle Scholar
  91. 91.
    Vazquez N, Rodriguez-Barrientos CA, Aznar-Cervantes SD, et al. Silk fibroin films for corneal endothelial regeneration: transplant in a rabbit Descemet membrane endothelial Keratoplasty. Invest Ophthalmol Vis Sci. 2017;58(9):3357–65.CrossRefGoogle Scholar
  92. 92.
    Mimura T, Yamagami S, Yokoo S, et al. Cultured human corneal endothelial cell transplantation with a collagen sheet in a rabbit model. Invest Ophthalmol Vis Sci. 2004;45(9):2992–7.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Stephen Wahlig
    • 1
  • Gary Swee-Lim Peh
    • 1
  • Matthew Lovatt
    • 1
  • Jodhbir S. Mehta
    • 2
  1. 1.Tissue Engineering and Stem Cell Group, The Academia, Singapore Eye Research InstituteSingaporeSingapore
  2. 2.Singapore National Eye Centre, Department of Cornea and External DiseaseSingaporeSingapore

Personalised recommendations