Advertisement

Umbilical Cord Stem Cells in the Treatment of Corneal Diseases

  • Mohammed Ziaei
  • Jie ZhangEmail author
  • Dipika V. Patel
  • Charles N. J. McGhee
Chapter
Part of the Essentials in Ophthalmology book series (ESSENTIALS)

Abstract

To restore transparency and function, corneal specialists currently utilise stem cells of different origins, bioengineered cells and biomaterials. Stem cells are capable of giving rise to progenies with specific functional and morphological traits and in recent years, extraordinary advances have initiated an era of hope for clinical regenerative strategies and tissue engineering applications. In this chapter, we provide an overview of the potential benefits of human umbilical cord derived stem cell therapy and briefly review current approaches to utilize human umbilical cord stem cells to treat diseases involving the corneal epithelium, stroma, and endothelium.

Keywords

Human umbilical cord stem cells Mesenchymal stem cells Tissue regeneration, stem cell therapy Cornea Transplantation 

References

  1. 1.
    Oliva MS, Schottman T, Gulati M. Turning the tide of corneal blindness. Indian J Ophthalmol. 2012;60(5):423–7.CrossRefGoogle Scholar
  2. 2.
    Weiss ML, Troyer DL. Stem cells in the umbilical cord. Stem Cell Rev. 2006;2(2):155–62.CrossRefGoogle Scholar
  3. 3.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.CrossRefGoogle Scholar
  4. 4.
    Takacs L, Toth E, Berta A, Vereb G. Stem cells of the adult cornea: from cytometric markers to therapeutic applications. Cytometry A. 2009;75(1):54–66.CrossRefGoogle Scholar
  5. 5.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.CrossRefGoogle Scholar
  6. 6.
    Arutyunyan I, Elchaninov A, Makarov A, Fatkhudinov T. Umbilical cord as prospective source for mesenchymal stem cell-based therapy. Stem Cells Int. 2016;2016:6901286.CrossRefGoogle Scholar
  7. 7.
    Ziaei M, Zhang J, Patel DV, McGhee CNJ. Umbilical cord stem cells in the treatment of corneal disease. Surv Ophthalmol. 2017;62(6):803–15.CrossRefGoogle Scholar
  8. 8.
    Chang YJ, Tseng CP, Hsu LF, Hsieh TB, Hwang SM. Characterization of two populations of mesenchymal progenitor cells in umbilical cord blood. Cell Biol Int. 2006;30(6):495–9.CrossRefGoogle Scholar
  9. 9.
    Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007;25(11):2739–49.CrossRefGoogle Scholar
  10. 10.
    Oie Y, Nishida K. Regenerative medicine for the cornea. Biomed Res Int. 2013;2013:428247.CrossRefGoogle Scholar
  11. 11.
    Dua HS, Forrester JV. The corneoscleral limbus in human corneal epithelial wound healing. Am J Ophthalmol. 1990;110(6):646–56.CrossRefGoogle Scholar
  12. 12.
    Shortt AJ, Tuft SJ, Daniels JT. Corneal stem cells in the eye clinic. Br Med Bull. 2011;100:209–25.CrossRefGoogle Scholar
  13. 13.
    Bobba S, Di Girolamo N, Mills R, Daniell M, Chan E, Harkin DG, et al. Nature and incidence of severe limbal stem cell deficiency in Australia and New Zealand. Clin Exp Ophthalmol. 2017;45(2):174–81.CrossRefGoogle Scholar
  14. 14.
    Reza HM, Ng BY, Phan TT, Tan DT, Beuerman RW, Ang LP. Characterization of a novel umbilical cord lining cell with CD227 positivity and unique pattern of P63 expression and function. Stem Cell Rev. 2011;7(3):624–38.CrossRefGoogle Scholar
  15. 15.
    Wang J, Hao J, Bai D, Gu Q, Han W, Wang L, et al. Generation of clinical-grade human induced pluripotent stem cells in Xeno-free conditions. Stem Cell Res Ther. 2015;6:223.CrossRefGoogle Scholar
  16. 16.
    DelMonte DW, Kim T. Anatomy and physiology of the cornea. J Cataract Refract Surg. 2011;37(3):588–98.CrossRefGoogle Scholar
  17. 17.
    Coulson-Thomas VJ, Caterson B, Kao WW. Transplantation of human umbilical mesenchymal stem cells cures the corneal defects of mucopolysaccharidosis VII mice. Stem Cells. 2013;31(10):2116–26.CrossRefGoogle Scholar
  18. 18.
    Kao WW, Call M, Chang S-H, Birk DE. Human umbilical mesenchymal stem cells treat acquired and congenital corneal opacity. Invest Ophthalmol Vis Sci. 2015;56:1304.CrossRefGoogle Scholar
  19. 19.
    Coulson-Thomas VJ, Gesteira TF, Hascall V, Kao W. Umbilical cord mesenchymal stem cells suppress host rejection: the role of the glycocalyx. J Biol Chem. 2014;289(34):23465–81.CrossRefGoogle Scholar
  20. 20.
    Joyce NC. Proliferative capacity of the corneal endothelium. Prog Retin Eye Res. 2003;22(3):359–89.CrossRefGoogle Scholar
  21. 21.
    Joyce NC. Proliferative capacity of corneal endothelial cells. Exp Eye Res. 2012;95(1):16–23.CrossRefGoogle Scholar
  22. 22.
    Cvekl A, Tamm ER. Anterior eye development and ocular mesenchyme: new insights from mouse models and human diseases. BioEssays. 2004;26(4):374–86.CrossRefGoogle Scholar
  23. 23.
    Joyce NC, Harris DL, Markov V, Zhang Z, Saitta B. Potential of human umbilical cord blood mesenchymal stem cells to heal damaged corneal endothelium. Mol Vis. 2012;18:547–64.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Shao C, Chen J, Chen P, Zhu M, Yao Q, Gu P, et al. Targeted transplantation of human umbilical cord blood endothelial progenitor cells with immunomagnetic nanoparticles to repair corneal endothelium defect. Stem Cells Dev. 2015;24(6):756–67.CrossRefGoogle Scholar
  25. 25.
    Park CY, Lee JK, Gore PK, Lim CY, Chuck RS. Keratoplasty in the United States: a 10-year review from 2005 through 2014. Ophthalmology. 2015;122(12):2432–42.CrossRefGoogle Scholar
  26. 26.
    Ittner LM, Wurdak H, Schwerdtfeger K, Kunz T, Ille F, Leveen P, et al. Compound developmental eye disorders following inactivation of TGFbeta signaling in neural-crest stem cells. J Biol. 2005;4(3):11.CrossRefGoogle Scholar
  27. 27.
    Proulx S, Brunette I. Methods being developed for preparation, delivery and transplantation of a tissue-engineered corneal endothelium. Exp Eye Res. 2012;95(1):68–75.CrossRefGoogle Scholar
  28. 28.
    Chen Y, Huang K, Nakatsu MN, Xue Z, Deng SX, Fan G. Identification of novel molecular markers through transcriptomic analysis in human fetal and adult corneal endothelial cells. Hum Mol Genet. 2013;22(7):1271–9.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mohammed Ziaei
    • 1
  • Jie Zhang
    • 1
    Email author
  • Dipika V. Patel
    • 1
  • Charles N. J. McGhee
    • 1
  1. 1.Department of OphthalmologyNew Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of AucklandAucklandNew Zealand

Personalised recommendations