Advertisement

Corneal Endothelium Regeneration: Future Prospects

  • Wei-Ting Ho
  • Hsin-Yu Liu
  • Fung-Rong Hu
  • I-Jong WangEmail author
Chapter
Part of the Essentials in Ophthalmology book series (ESSENTIALS)

Abstract

Corneal endothelial dysfunction causes corneal edema and severe visual impairments that may lead to permanent blindness. Although corneal endothelial keratoplasty is currently the treatment-of-choice to restore vision, it faces several difficulties, including worldwide shortage of donor corneas, progressive loss of endothelial cells after surgery, and extensive damage of endothelial cells during surgical manipulation. With further understanding of the corneal endothelial cell biology and advances in the field of pharmacological treatment, tissue engineering, cell or stem cell therapy, different strategies have been developed to treat corneal endothelial disorders.

Keywords

Corneal endothelium Regeneration Corneal transplantation Tissue engineering Cell therapy Stem cell 

Notes

Conflict of Interest

Wei-Ting Ho, Hsin-Yu Liu, Fung-Rong Hu and I-Jong Wang declare that they have no conflict of interest.

Informed Consent

No human studies were carried out by the authors for this article.

Animal Studies

All institutional and national guidelines for the care and use of laboratory animals were followed.

Reference

  1. 1.
    Barry PA, Petroll WM, Andrews PM, Cavanagh HD, Jester JV. The spatial organization of corneal endothelial cytoskeletal proteins and their relationship to the apical junctional complex. Invest Ophthalmol Vis Sci. 1995;36(6):1115–24.PubMedGoogle Scholar
  2. 2.
    Bahn CF, Glassman RM, MacCallum DK, Lillie JH, Meyer RF, Robinson BJ, et al. Postnatal development of corneal endothelium. Invest Ophthalmol Vis Sci. 1986;27(1):44–51.PubMedGoogle Scholar
  3. 3.
    Bourne WM, Nelson LR, Hodge DO. Central corneal endothelial cell changes over a ten-year period. Invest Ophthalmol Vis Sci. 1997;38(3):779–82.PubMedGoogle Scholar
  4. 4.
    Wilson RS, Roper-Hall MJ. Effect of age on the endothelial cell count in the normal eye. Br J Ophthalmol. 1982;66(8):513–5.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Senoo T, Joyce NC. Cell cycle kinetics in corneal endothelium from old and young donors. Invest Ophthalmol Vis Sci. 2000;41(3):660–7.PubMedGoogle Scholar
  6. 6.
    Senoo T, Obara Y, Joyce NC. EDTA: a promoter of proliferation in human corneal endothelium. Invest Ophthalmol Vis Sci. 2000;41(10):2930–5.PubMedGoogle Scholar
  7. 7.
    Joyce NC. Proliferative capacity of corneal endothelial cells. Exp Eye Res. 2012;95(1):16–23.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Yoshida K, Kase S, Nakayama K, Nagahama H, Harada T, Ikeda H, et al. Involvement of p27KIP1 in the proliferation of the developing corneal endothelium. Invest Ophthalmol Vis Sci. 2004;45(7):2163–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Joyce NC, Harris DL, Mello DM. Mechanisms of mitotic inhibition in corneal endothelium: contact inhibition and TGF-beta2. Invest Ophthalmol Vis Sci. 2002;43(7):2152–9.PubMedGoogle Scholar
  10. 10.
    Teruo Nishida SSaNM. In: Mannis MJ, Holland EJ, editors. Cornea. 4th ed. St. Louis, MO.: Elsevier; 2017. p. 1–22.Google Scholar
  11. 11.
    Bourne WM. Primary corneal endotheliopathies. Am J Ophthalmol. 1983;95(6):852–4.PubMedCrossRefGoogle Scholar
  12. 12.
    Magovern M, Beauchamp GR, McTigue JW, Fine BS, Baumiller RC. Inheritance of Fuchs' combined dystrophy. Ophthalmology. 1979;86(10):1897–923.PubMedCrossRefGoogle Scholar
  13. 13.
    Bourne WM. Biology of the corneal endothelium in health and disease. Eye (Lond). 2003;17(8):912–8.CrossRefGoogle Scholar
  14. 14.
    Inoue Y. Review of clinical and basic approaches to corneal endotheliitis. Cornea. 2014;33(Suppl 11):S3–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Carlson KH, Ilstrup DM, Bourne WM, Dyer JA. Effect of silicone elastomer contact lens wear on endothelial cell morphology in aphakic eyes. Cornea. 1990;9(1):45–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Ang LP, Higashihara H, Sotozono C, Shanmuganathan VA, Dua H, Tan DT, et al. Argon laser iridotomy-induced bullous keratopathy a growing problem in Japan. Br J Ophthalmol. 2007;91(12):1613–5.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Wang PX, Koh VT, Loon SC. Laser iridotomy and the corneal endothelium: a systemic review. Acta Ophthalmol. 2014;92(7):604–16.PubMedCrossRefGoogle Scholar
  18. 18.
    Takahashi H. Corneal endothelium and phacoemulsification. Cornea. 2016;35(Suppl 1):S3–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Miyata K, Nagamoto T, Maruoka S, Tanabe T, Nakahara M, Amano S. Efficacy and safety of the soft-shell technique in cases with a hard lens nucleus. J Cataract Refract Surg. 2002;28(9):1546–50.PubMedCrossRefGoogle Scholar
  20. 20.
    Suzuki H, Oki K, Igarashi T, Shiwa T, Takahashi H. Temperature in the anterior chamber during phacoemulsification. J Cataract Refract Surg. 2014;40(5):805–10.PubMedCrossRefGoogle Scholar
  21. 21.
    Murano N, Ishizaki M, Sato S, Fukuda Y, Takahashi H. Corneal endothelial cell damage by free radicals associated with ultrasound oscillation. Arch Ophthalmol. 2008;126(6):816–21.PubMedCrossRefGoogle Scholar
  22. 22.
    Bourne WM, Nelson LR, Hodge DO. Continued endothelial cell loss ten years after lens implantation. Ophthalmology. 1994;101(6):1014–22. discussion 22-3PubMedCrossRefGoogle Scholar
  23. 23.
    Armitage WJ, Tullo AB, Larkin DF. The first successful full-thickness corneal transplant: a commentary on Eduard Zirm's landmark paper of 1906. Br J Ophthalmol. 2006;90(10):1222–3.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Crawford AZ, Patel DV, McGhee C. A brief history of corneal transplantation: from ancient to modern. Oman J Ophthalmol. 2013;6(Suppl 1):S12–7.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Nanavaty MA, Wang X, Shortt AJ. Endothelial keratoplasty versus penetrating keratoplasty for Fuchs endothelial dystrophy. Cochrane Database Syst Rev. 2014;2:CD008420.PubMedCentralPubMedGoogle Scholar
  26. 26.
    Jurkunas UV, Bitar MS, Funaki T, Azizi B. Evidence of oxidative stress in the pathogenesis of fuchs endothelial corneal dystrophy. Am J Pathol. 2010;177(5):2278–89.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Ziaei A, Schmedt T, Chen Y, Jurkunas UV. Sulforaphane decreases endothelial cell apoptosis in fuchs endothelial corneal dystrophy: a novel treatment. Invest Ophthalmol Vis Sci. 2013;54(10):6724–34.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Liu X, Ward K, Xavier C, Jann J, Clark AF, Pang IH, et al. The novel triterpenoid RTA 408 protects human retinal pigment epithelial cells against H2O2-induced cell injury via NF-E2-related factor 2 (Nrf2) activation. Redox Biol. 2016;8:98–109.PubMedCrossRefGoogle Scholar
  29. 29.
    Schulz MW, Chamberlain CG, de Iongh RU, McAvoy JW. Acidic and basic FGF in ocular media and lens: implications for lens polarity and growth patterns. Development. 1993;118(1):117–26.PubMedGoogle Scholar
  30. 30.
    Tripathi RC, Borisuth NS, Tripathi BJ. Detection, quantification, and significance of basic fibroblast growth factor in the aqueous humor of man, cat, dog and pig. Exp Eye Res. 1992;54(3):447–54.PubMedCrossRefGoogle Scholar
  31. 31.
    Rieck P, Oliver L, Engelmann K, Fuhrmann G, Hartmann C, Courtois Y. The role of exogenous/endogenous basic fibroblast growth factor (FGF2) and transforming growth factor beta (TGF beta-1) on human corneal endothelial cells proliferation in vitro. Exp Cell Res. 1995;220(1):36–46.PubMedCrossRefGoogle Scholar
  32. 32.
    van Setten GB, Fagerholm P, Philipson B, Schultz G. Growth factors and their receptors in the anterior chamber. Absence of epidermal growth factor and transforming growth factor alpha in human aqueous humor. Ophthalmic Res. 1996;28(6):361–4.PubMedCrossRefGoogle Scholar
  33. 33.
    Wilson SE, Schultz GS, Chegini N, Weng J, He YG. Epidermal growth factor, transforming growth factor alpha, transforming growth factor beta, acidic fibroblast growth factor, basic fibroblast growth factor, and interleukin-1 proteins in the cornea. Exp Eye Res. 1994;59(1):63–71.PubMedCrossRefGoogle Scholar
  34. 34.
    Jampel HD, Roche N, Stark WJ, Roberts AB. Transforming growth factor-beta in human aqueous humor. Curr Eye Res. 1990;9(10):963–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Cousins SW, McCabe MM, Danielpour D, Streilein JW. Identification of transforming growth factor-beta as an immunosuppressive factor in aqueous humor. Invest Ophthalmol Vis Sci. 1991;32(8):2201–11.PubMedGoogle Scholar
  36. 36.
    Gu X, Seong GJ, Lee YG, Kay EP. Fibroblast growth factor 2 uses distinct signaling pathways for cell proliferation and cell shape changes in corneal endothelial cells. Invest Ophthalmol Vis Sci. 1996;37(11):2326–34.PubMedGoogle Scholar
  37. 37.
    Lee JG, Ko MK, Kay EP. Endothelial mesenchymal transformation mediated by IL-1beta-induced FGF-2 in corneal endothelial cells. Exp Eye Res. 2012;95(1):35–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Xia X, Babcock JP, Blaber SI, Harper KM, Blaber M. Pharmacokinetic properties of 2nd-generation fibroblast growth factor-1 mutants for therapeutic application. PLoS One. 2012;7(11):e48210.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Degirolamo C, Sabba C, Moschetta A. Therapeutic potential of the endocrine fibroblast growth factors FGF19, FGF21 and FGF23. Nat Rev Drug Discov. 2016;15(1):51–69.PubMedCrossRefGoogle Scholar
  40. 40.
    Riento K, Ridley AJ. Rocks: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol. 2003;4(6):446–56.PubMedCrossRefGoogle Scholar
  41. 41.
    Okumura N, Ueno M, Koizumi N, Sakamoto Y, Hirata K, Hamuro J, et al. Enhancement on primate corneal endothelial cell survival in vitro by a ROCK inhibitor. Invest Ophthalmol Vis Sci. 2009;50(8):3680–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Okumura N, Nakano S, Kay EP, Numata R, Ota A, Sowa Y, et al. Involvement of cyclin D and p27 in cell proliferation mediated by ROCK inhibitors Y-27632 and Y-39983 during corneal endothelium wound healing. Invest Ophthalmol Vis Sci. 2014;55(1):318–29.PubMedCrossRefGoogle Scholar
  43. 43.
    Peh GS, Adnan K, George BL, Ang HP, Seah XY, Tan DT, et al. The effects of Rho-associated kinase inhibitor Y-27632 on primary human corneal endothelial cells propagated using a dual media approach. Sci Rep. 2015;5:9167.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Okumura N, Koizumi N, Kay EP, Ueno M, Sakamoto Y, Nakamura S, et al. The ROCK inhibitor eye drop accelerates corneal endothelium wound healing. Invest Ophthalmol Vis Sci. 2013;54(4):2493–502.PubMedCrossRefGoogle Scholar
  45. 45.
    Shah RD, Randleman JB, Grossniklaus HE. Spontaneous corneal clearing after Descemet's stripping without endothelial replacement. Ophthalmology. 2012;119(2):256–60.PubMedCrossRefGoogle Scholar
  46. 46.
    Galvis V, Tello A, Miotto G. Human corneal endothelium regeneration. Ophthalmology. 2012;119(8):1714–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Bleyen I, Saelens IE, van Dooren BT, van Rij G. Spontaneous corneal clearing after Descemet's stripping. Ophthalmology. 2013;120(1):215.PubMedCrossRefGoogle Scholar
  48. 48.
    Okumura N, Inoue R, Okazaki Y, Nakano S, Nakagawa H, Kinoshita S, et al. Effect of the rho kinase inhibitor Y-27632 on corneal endothelial wound healing. Invest Ophthalmol Vis Sci. 2015;56(10):6067–74.PubMedCrossRefGoogle Scholar
  49. 49.
    Moloney G, Chan UT, Hamilton A, Zahidin AM, Grigg JR, Devasahayam RN. Descemetorhexis for Fuchs' dystrophy. Can J Ophthalmol. 2015;50(1):68–72.PubMedCrossRefGoogle Scholar
  50. 50.
    Balachandran C, Ham L, Verschoor CA, Ong TS, van der Wees J, Melles GR. Spontaneous corneal clearance despite graft detachment in descemet membrane endothelial keratoplasty. Am J Ophthalmol. 2009;148(2):227–34. e1PubMedCrossRefGoogle Scholar
  51. 51.
    Dirisamer M, Dapena I, Ham L, van Dijk K, Oganes O, Frank LE, et al. Patterns of corneal endothelialization and corneal clearance after descemet membrane endothelial keratoplasty for fuchs endothelial dystrophy. Am J Ophthalmol. 2011;152(4):543–55. e1PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Dirisamer M, van Dijk K, Dapena I, Ham L, Oganes O, Frank LE, et al. Prevention and management of graft detachment in descemet membrane endothelial keratoplasty. Arch Ophthalmol. 2012;130(3):280–91.PubMedCrossRefGoogle Scholar
  53. 53.
    Zafirakis P, Kymionis GD, Grentzelos MA, Livir-Rallatos G. Corneal graft detachment without corneal edema after descemet stripping automated endothelial keratoplasty. Cornea. 2010;29(4):456–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Dirisamer M, Yeh RY, van Dijk K, Ham L, Dapena I, Melles GR. Recipient endothelium may relate to corneal clearance in descemet membrane endothelial transfer. Am J Ophthalmol. 2012;154(2):290–6 e1.PubMedCrossRefGoogle Scholar
  55. 55.
    Lam FC, Baydoun L, Dirisamer M, Lie J, Dapena I, Melles GR. Hemi-Descemet membrane endothelial keratoplasty transplantation: a potential method for increasing the pool of endothelial graft tissue. JAMA Ophthalmol. 2014;132(12):1469–73.PubMedCrossRefGoogle Scholar
  56. 56.
    Lie JT, Lam FC, Groeneveld-van Beek EA, van der Wees J, Melles GR. Graft preparation for hemi-Descemet membrane endothelial keratoplasty (hemi-DMEK). Br J Ophthalmol. 2016;100(3):420–4.PubMedCrossRefGoogle Scholar
  57. 57.
    Moloney G, Petsoglou C, Ball M, Kerdraon Y, Hollhumer R, Spiteri N, et al. Descemetorhexis without grafting for Fuchs endothelial dystrophy-supplementation with topical ripasudil. Cornea. 2017;36(6):642–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Borkar DS, Veldman P, Colby KA. Treatment of Fuchs endothelial dystrophy byddescemet stripping without endothelial keratoplasty. Cornea. 2016;35(10):1267–73.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Iovieno A, Neri A, Soldani AM, Adani C, Fontana L. Descemetorhexis without graft placement for the treatment of Fuchs endothelial dystrophy: preliminary results and review of the literature. Cornea. 2017;36(6):637–41.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Arbelaez JG, Price MO, Price FW Jr. Long-term follow-up and complications of stripping descemet membrane without placement of graft in eyes with Fuchs endothelial dystrophy. Cornea. 2014;33(12):1295–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Koenig SB. Planned descemetorhexis without endothelial keratoplasty in eyes with Fuchs corneal endothelial dystrophy. Cornea. 2015;34(9):1149–51.PubMedCrossRefGoogle Scholar
  62. 62.
    Teichmann J, Valtink M, Nitschke M, Gramm S, Funk RH, Engelmann K, et al. Tissue engineering of the corneal endothelium: a review of carrier materials. J Funct Biomater. 2013;4(4):178–208.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Gospodarowicz D, Greenburg G, Alvarado J. Transplantation of cultured bovine corneal endothelial cells to rabbit cornea: clinical implications for human studies. Proc Natl Acad Sci U S A. 1979;76(1):464–8.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Proulx S, Bensaoula T, Nada O, Audet C, d'Arc Uwamaliya J, Devaux A, et al. Transplantation of a tissue-engineered corneal endothelium reconstructed on a devitalized carrier in the feline model. Invest Ophthalmol Vis Sci. 2009;50(6):2686–94.PubMedCrossRefGoogle Scholar
  65. 65.
    Fan T, Zhao J, Ma X, Xu X, Zhao W, Xu B. Establishment of a continuous untransfected human corneal endothelial cell line and its biocompatibility to denuded amniotic membrane. Mol Vis. 2011;17:469–80.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Watanabe R, Hayashi R, Kimura Y, Tanaka Y, Kageyama T, Hara S, et al. A novel gelatin hydrogel carrier sheet for corneal endothelial transplantation. Tissue Eng Part A. 2011;17(17–18):2213–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Mimura T, Yamagami S, Yokoo S, Usui T, Tanaka K, Hattori S, et al. Cultured human corneal endothelial cell transplantation with a collagen sheet in a rabbit model. Invest Ophthalmol Vis Sci. 2004;45(9):2992–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Madden PW, Lai JN, George KA, Giovenco T, Harkin DG, Chirila TV. Human corneal endothelial cell growth on a silk fibroin membrane. Biomaterials. 2011;32(17):4076–84.PubMedCrossRefGoogle Scholar
  69. 69.
    Vazquez N, Rodriguez-Barrientos CA, Aznar-Cervantes SD, Chacon M, Cenis JL, Riestra AC, et al. Silk fibroin films for corneal endothelial regeneration: transplant in a rabbit descemet membrane endothelial keratoplasty. Invest Ophthalmol Vis Sci. 2017;58(9):3357–65.PubMedCrossRefGoogle Scholar
  70. 70.
    Wang TJ, Wang IJ, Chen YH, Lu JN, Young TH. Polyvinylidene fluoride for proliferation and preservation of bovine corneal endothelial cells by enhancing type IV collagen production and deposition. J Biomed Mater Res A. 2012;100(1):252–60.PubMedCrossRefGoogle Scholar
  71. 71.
    Hadlock T, Singh S, Vacanti JP, McLaughlin BJ. Ocular cell monolayers cultured on biodegradable substrates. Tissue Eng. 1999;5(3):187–96.PubMedCrossRefGoogle Scholar
  72. 72.
    Wang TJ, Wang IJ, Lu JN, Young TH. Novel chitosan-polycaprolactone blends as potential scaffold and carrier for corneal endothelial transplantation. Mol Vis. 2012;18:255–64.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Sumide T, Nishida K, Yamato M, Ide T, Hayashida Y, Watanabe K, et al. Functional human corneal endothelial cell sheets harvested from temperature-responsive culture surfaces. FASEB J. 2006;20(2):392–4.PubMedCrossRefGoogle Scholar
  74. 74.
    Lai JY, Chen KH, Hsiue GH. Tissue-engineered human corneal endothelial cell sheet transplantation in a rabbit model using functional biomaterials. Transplantation. 2007;84(10):1222–32.PubMedCrossRefGoogle Scholar
  75. 75.
    Okumura N, Koizumi N, Ueno M, Sakamoto Y, Takahashi H, Tsuchiya H, et al. ROCK inhibitor converts corneal endothelial cells into a phenotype capable of regenerating in vivo endothelial tissue. Am J Pathol. 2012;181(1):268–77.PubMedCrossRefGoogle Scholar
  76. 76.
    Okumura N, Sakamoto Y, Fujii K, Kitano J, Nakano S, Tsujimoto Y, et al. Rho kinase inhibitor enables cell-based therapy for corneal endothelial dysfunction. Sci Rep. 2016;6:26113.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Sabater AL, Andreu EJ, Garcia-Guzman M, Lopez T, Abizanda G, Perez VL, et al. Combined PI3K/Akt and Smad2 activation promotes corneal endothelial cell proliferation. Invest Ophthalmol Vis Sci. 2017;58(2):745–54.PubMedCrossRefGoogle Scholar
  78. 78.
    Li W, Sabater AL, Chen YT, Hayashida Y, Chen SY, He H, et al. A novel method of isolation, preservation, and expansion of human corneal endothelial cells. Invest Ophthalmol Vis Sci. 2007;48(2):614–20.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Peh GS, Beuerman RW, Colman A, Tan DT, Mehta JS. Human corneal endothelial cell expansion for corneal endothelium transplantation: an overview. Transplantation. 2011;91(8):811–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Okumura N, Kakutani K, Numata R, Nakahara M, Schlotzer-Schrehardt U, Kruse F, et al. Laminin-511 and -521 enable efficient in vitro expansion of human corneal endothelial cells. Invest Ophthalmol Vis Sci. 2015;56(5):2933–42.PubMedCrossRefGoogle Scholar
  81. 81.
    Zhu YT, Chen HC, Chen SY, Tseng SCG. Nuclear p120 catenin unlocks mitotic block of contact-inhibited human corneal endothelial monolayers without disrupting adherent junctions. J Cell Sci. 2012;125(15):3636–48.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Okumura N, Koizumi N, Ueno M, Sakamoto Y, Takahashi H, Hamuro J, et al. The new therapeutic concept of using a rho kinase inhibitor for the treatment of corneal endothelial dysfunction. Cornea. 2011;30(Suppl 1):S54–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Nakahara M, Okumura N, Kay EP, Hagiya M, Imagawa K, Hosoda Y, et al. Corneal endothelial expansion promoted by human bone marrow mesenchymal stem cell-derived conditioned medium. PLoS One. 2013;8(7):e69009.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Lee JG, Kay EP. FGF-2-mediated signal transduction during endothelial mesenchymal transformation in corneal endothelial cells. Exp Eye Res. 2006;83(6):1309–16.PubMedCrossRefGoogle Scholar
  85. 85.
    Roy O, Leclerc VB, Bourget JM, Theriault M, Proulx S. Understanding the process of corneal endothelial morphological change in vitro. Invest Ophthalmol Vis Sci. 2015;56(2):1228–37.PubMedCrossRefGoogle Scholar
  86. 86.
    Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178–96.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Jakobiec FA, Bhat P. Retrocorneal membranes: a comparative immunohistochemical analysis of keratocytic, endothelial, and epithelial origins. Am J Ophthalmol. 2010;150(2):230–42. e2PubMedCrossRefGoogle Scholar
  88. 88.
    Zhu YT, Hayashida Y, Kheirkhah A, He H, Chen SY, Tseng SC. Characterization and comparison of intercellular adherent junctions expressed by human corneal endothelial cells in vivo and in vitro. Invest Ophthalmol Vis Sci. 2008;49(9):3879–86.PubMedCrossRefGoogle Scholar
  89. 89.
    Ho WT, Chang JS, Su CC, Chang SW, Hu FR, Jou TS, et al. Inhibition of matrix metalloproteinase activity reverses corneal endothelial-mesenchymal transition. Am J Pathol. 2015;185(8):2158–67.PubMedCrossRefGoogle Scholar
  90. 90.
    Okumura N, Kay EP, Nakahara M, Hamuro J, Kinoshita S, Koizumi N. Inhibition of TGF-beta signaling enables human corneal endothelial cell expansion in vitro for use in regenerative medicine. PLoS One. 2013;8(2):e58000.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Li C, Dong F, Jia Y, Du H, Dong N, Xu Y, et al. Notch signal regulates corneal endothelial-to-mesenchymal transition. Am J Pathol. 2013;183(3):786–95.PubMedCrossRefGoogle Scholar
  92. 92.
    Hamuro J, Toda M, Asada K, Hiraga A, Schlotzer-Schrehardt U, Montoya M, et al. Cell homogeneity indispensable for regenerative medicine by cultured human corneal endothelial cells. Invest Ophthalmol Vis Sci. 2016;57(11):4749–61.PubMedCrossRefGoogle Scholar
  93. 93.
    Ueno M, Asada K, Toda M, Hiraga A, Montoya M, Sotozono C, et al. MicroRNA profiles qualify phenotypic features of cultured human corneal endothelial cells. Invest Ophthalmol Vis Sci. 2016;57(13):5509–17.PubMedCrossRefGoogle Scholar
  94. 94.
    Ueno M, Asada K, Toda M, Nagata K, Sotozono C, Kosaka N, et al. Concomitant evaluation of a panel of exosome proteins and MiRs for qualification of cultured human corneal endothelial cells. Invest Ophthalmol Vis Sci. 2016;57(10):4393–402.PubMedCrossRefGoogle Scholar
  95. 95.
    Ueno M, Asada K, Toda M, Schlotzer-Schrehardt U, Nagata K, Montoya M, et al. Gene signature-based development of ELISA assays for reproducible qualification of cultured human corneal endothelial cells. Invest Ophthalmol Vis Sci. 2016;57(10):4295–305.PubMedCrossRefGoogle Scholar
  96. 96.
    Peh GS, Chng Z, Ang HP, Cheng TY, Adnan K, Seah XY, et al. Propagation of human corneal endothelial cells? A novel dual media approach. Cell Transplant. 2015;24(2):287–304.PubMedCrossRefGoogle Scholar
  97. 97.
    Okumura N, Kay EP, Nakahara M, Hamuro J, Kinoshita S, Koizumi N. Inhibition of TGF-β signaling enables human corneal endothelial cell expansion in vitro for use in regenerative medicine. PLoS One. 2013;8(2):e58000.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Bartakova A, Alvarez-Delfin K, Weisman AD, Salero E, Raffa GA, Merkhofer RM Jr, et al. Novel identity and functional markers for human corneal endothelial cells. Invest Ophthalmol Vis Sci. 2016;57(6):2749–62.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    McCabe KL, Kunzevitzky NJ, Chiswell BP, Xia X, Goldberg JL, Lanza R. Efficient generation of human embryonic stem cell-derived corneal endothelial cells by directed differentiation. PLoS One. 2015;10(12):e0145266.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Song Q, Yuan S, An Q, Chen Y, Mao FF, Liu Y, et al. Directed differentiation of human embryonic stem cells to corneal endothelial cell-like cells: a transcriptomic analysis. Exp Eye Res. 2016;151:107–14.PubMedCrossRefGoogle Scholar
  101. 101.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.CrossRefGoogle Scholar
  102. 102.
    Foster JW, Wahlin K, Adams SM, Birk DE, Zack DJ, Chakravarti S. Cornea organoids from human induced pluripotent stem cells. Sci Rep. 2017;7:41286.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Zhao JJ, Afshari NA. Generation of human corneal endothelial cells via in vitro ocular lineage restriction of pluripotent stem cells. Invest Ophthalmol Vis Sci. 2016;57(15):6878–84.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Hu Q, Friedrich AM, Johnson LV, Clegg DO. Memory in induced pluripotent stem cells: reprogrammed human retinal-pigmented epithelial cells show tendency for spontaneous redifferentiation. Stem Cells. 2010;28(11):1981–91.PubMedCrossRefGoogle Scholar
  105. 105.
    Shao C, Fu Y, Lu W, Fan X. Bone marrow-derived endothelial progenitor cells: a promising therapeutic alternative for corneal endothelial dysfunction. Cells Tissues Organs. 2011;193(4):253–63.PubMedCrossRefGoogle Scholar
  106. 106.
    Joyce NC, Harris DL, Markov V, Zhang Z, Saitta B. Potential of human umbilical cord blood mesenchymal stem cells to heal damaged corneal endothelium. Mol Vis. 2012;18:547–64.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Shao C, Chen J, Chen P, Zhu M, Yao Q, Gu P, et al. Targeted transplantation of human umbilical cord blood endothelial progenitor cells with immunomagnetic nanoparticles to repair corneal endothelium defect. Stem Cells Dev. 2015;24(6):756–67.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Bednarz J, Rodokanaki-von Schrenck A, Engelmann K. Different characteristics of endothelial cells from central and peripheral human cornea in primary culture and after subculture. In Vitro Cell Dev Biol Anim. 1998;34(2):149–53.PubMedCrossRefGoogle Scholar
  109. 109.
    Whikehart DR, Parikh CH, Vaughn AV, Mishler K, Edelhauser HF. Evidence suggesting the existence of stem cells for the human corneal endothelium. Mol Vis. 2005;11:816–24.PubMedPubMedCentralGoogle Scholar
  110. 110.
    McGowan SL, Edelhauser HF, Pfister RR, Whikehart DR. Stem cell markers in the human posterior limbus and corneal endothelium of unwounded and wounded corneas. Mol Vis. 2007;13:1984–2000.PubMedGoogle Scholar
  111. 111.
    Yokoo S, Yamagami S, Yanagi Y, Uchida S, Mimura T, Usui T, et al. Human corneal endothelial cell precursors isolated by sphere-forming assay. Invest Ophthalmol Vis Sci. 2005;46(5):1626–31.PubMedCrossRefGoogle Scholar
  112. 112.
    Katikireddy KR, Schmedt T, Price MO, Price FW, Jurkunas UV. Existence of neural crest-derived progenitor cells in normal and Fuchs endothelial dystrophy corneal endothelium. Am J Pathol. 2016;186(10):2736–50.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Wei-Ting Ho
    • 1
  • Hsin-Yu Liu
    • 2
  • Fung-Rong Hu
    • 2
    • 3
  • I-Jong Wang
    • 2
    • 3
    Email author
  1. 1.Department of OphthalmologyFar Eastern Memorial HospitalNew Taipei CityTaiwan
  2. 2.Department of OphthalmologyNational Taiwan University HospitalTaipeiTaiwan
  3. 3.College of Medicine, National Taiwan UniversityTaipeiTaiwan

Personalised recommendations