Corneal Tissue Engineering

  • Mohammad Mirazul Islam
  • Roholah Sharifi
  • Miguel Gonzalez-AndradesEmail author
Part of the Essentials in Ophthalmology book series (ESSENTIALS)


Mankind has been always fascinated with the idea of restoring any damaged tissue or organ. Regarding corneal functional restoration, the French ophthalmologist Pellier de Quengsy was the first one proposing in 1789 a replacement of an opaque cornea using a piece of glass surrounded by a silver ring. However, the paradigm of corneal blindness treatment does not change until 1905, when Eduard Zirm performed the first corneal transplant to a patient using a donor cornea. Corneal transplant is still the most used and reliable treatment for some corneal diseases despite their three major drawbacks: the scarcity of donors, the risk of rejection and the transmission of infectious diseases. In this milieu, corneal tissue engineering emerges with the ambition of generating artificial corneas or other type of tissue-engineered products that lead to an optimal corneal regeneration, overcoming those major disadvantages of allogeneic corneal transplants. Once we understand the structure-function relationships in the cornea, we can generate a tissue-engineered corneal substitute to restore, maintain, or improve corneal functions, using different building blocks: cells, scaffolds and bioactive molecules. In this regard, here we briefly highlight some treatment options for corneal diseases based on different tissue-engineering strategies. Moreover, we explain the concepts and regulations necessary to understand the future clinical impact of tissue engineering in corneal therapy and surgery.


Cornea Tissue engineering Artificial corneas Cell therapy Advanced therapies Scaffolds 


  1. 1.
    Finch J. The ancient origins of prosthetic medicine. Lancet. 2011;377:548–9.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Chirila TV, Hicks CR. The origins of the artificial cornea: Pellier de Quengsy and his contribution to the modern concept of keratoprosthesis. Gesnerus. 1999;56:96–106.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Zirm EK. Eine erfolgreiche totale Keratoplastik (a successful total keratoplasty). 1906. Refract Corneal Surg. 1989;5:258–61.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Fagerholm P, Lagali NS, Merrett K, et al. A biosynthetic alternative to human donor tissue for inducing corneal regeneration: 24-month follow-up of a phase 1 clinical study. Sci Transl Med. 2010;2:46ra61.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Oliva MS, Schottman T, Gulati M. Turning the tide of corneal blindness. Indian J Ophthalmol. 2012;60:423–7.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Burton MJ. Prevention, treatment and rehabilitation. Community Eye Health. 2009;22:33–5.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Brunette I, Roberts CJ, Vidal F, et al. Alternatives to eye bank native tissue for corneal stromal replacement. Prog Retin Eye Res. 2017;59:97–130.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Hara H, Cooper DK. Xenotransplantation–the future of corneal transplantation? Cornea. 2011;30:371–8.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Whitcher JP, Srinivasan M, Upadhyay MP. Corneal blindness: a global perspective. Bull World Health Organ. 2001;79:214–21.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Abud TB, Di Zazzo A, Kheirkhah A, Dana R. Systemic immunomodulatory strategies in high-risk corneal transplantation. J Ophthalmic Vis Res. 2017;12:81–92.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Polisetti N, Islam MM, Griffith M. The artificial cornea. Methods Mol Biol. 2013;1014:45–52.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Pascolini D, Mariotti SP. Global estimates of visual impairment: 2010. Br J Ophthalmol. 2012;96:614–8.PubMedCrossRefGoogle Scholar
  13. 13.
    O’Day DM. Diseases potentially transmitted through corneal transplantation. Ophthalmology. 1989;96:1133–7; discussion 7–8.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Remeijer L, Maertzdorf J, Doornenbal P, Verjans GM, Osterhaus AD. Herpes simplex virus 1 transmission through corneal transplantation. Lancet. 2001;357:442.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Miller TD, Maxwell AJ, Lindquist TD, Requard J 3rd. Validation of cooling effect of insulated containers for the shipment of corneal tissue and recommendations for transport. Cornea. 2013;32:63–9.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Prevention of Blindness and Visual Impairment. Accessed 11 Nov 2017, at
  17. 17.
    Gain P, Jullienne R, He Z, et al. Global survey of corneal transplantation and eye banking. JAMA Ophthalmol. 2016;134:167–73.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920–6.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Nerem RM. Cellular engineering. Ann Biomed Eng. 1991;19:529–45.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Ma Y, Xu Y, Xiao Z, et al. Reconstruction of chemically burned rat corneal surface by bone marrow-derived human mesenchymal stem cells. Stem Cells. 2006;24:315–21.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Leijten J, Seo J, Yue K, et al. Spatially and temporally controlled hydrogels for tissue engineering. Mater Sci Eng R Rep. 2017;119:1–35.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Griffith M, Osborne R, Munger R, et al. Functional human corneal equivalents constructed from cell lines. Science. 1999;286:2169–72.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Boote C, Dennis S, Newton RH, Puri H, Meek KM. Collagen fibrils appear more closely packed in the prepupillary cornea: optical and biomechanical implications. Invest Ophthalmol Vis Sci. 2003;44:2941–8.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Marfurt CF, Cox J, Deek S, Dvorscak L. Anatomy of the human corneal innervation. Exp Eye Res. 2010;90:478–92.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Sweeney DF, Xie RZ, O'Leary DJ, et al. Nutritional requirements of the corneal epithelium and anterior stroma: clinical findings. Invest Ophthalmol Vis Sci. 1998;39:284–91.PubMedPubMedCentralGoogle Scholar
  26. 26.
    DiMattio J. In vivo entry of glucose analogs into lens and cornea of the rat. Invest Ophthalmol Vis Sci. 1984;25:160–5.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Holden BA, Mertz GW. Critical oxygen levels to avoid corneal edema for daily and extended wear contact lenses. Invest Ophthalmol Vis Sci. 1984;25:1161–7.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Apte RS, Niederkorn JY. Isolation and characterization of a unique natural killer cell inhibitory factor present in the anterior chamber of the eye. J Immunol. 1996;156:2667–73.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Niederkorn JY. Role of innate immune system in corneal transplantation. New Delhi: Jaypee Brothers Medical Publishers (P) Ltd; 2013.Google Scholar
  30. 30.
    Foulsham W, Marmalidou A, Amouzegar A, Coco G, Chen Y, Dana R. Review: the function of regulatory T cells at the ocular surface. Ocul Surf. 2017;15:652–9.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Qazi Y, Hamrah P. Corneal allograft rejection: Immunopathogenesis to therapeutics. J Clin Cell Immunol. 2013;2013:pii: 006.Google Scholar
  32. 32.
    Kruse FE. Stem cells and corneal epithelial regeneration. Eye. 1994;8(Pt 2):170–83.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Du Y, Funderburgh ML, Mann MM, SundarRaj N, Funderburgh JL. Multipotent stem cells in human corneal stroma. Stem Cells. 2005;23:1266–75.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Funderburgh ML, Du Y, Mann MM, SundarRaj N, Funderburgh JL. PAX6 expression identifies progenitor cells for corneal keratocytes. FASEB J: Off Publication Fed Am Soc Exp Biol. 2005;19:1371–3.CrossRefGoogle Scholar
  35. 35.
    Pellegrini G, Traverso CE, Franzi AT, Zingirian M, Cancedda R, De Luca M. Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet. 1997;349:990–3.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Rama P, Matuska S, Paganoni G, Spinelli A, De Luca M, Pellegrini G. Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med. 2010;363:147–55.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Sangwan VS, Basu S, Vemuganti GK, et al. Clinical outcomes of xeno-free autologous cultivated limbal epithelial transplantation: a 10-year study. Br J Ophthalmol. 2011;95:1525–9.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Nakamura T, Inatomi T, Sotozono C, et al. Transplantation of autologous serum-derived cultivated corneal epithelial equivalents for the treatment of severe ocular surface disease. Ophthalmology. 2006;113:1765–72.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Rama P, Bonini S, Lambiase A, et al. Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency. Transplantation. 2001;72:1478–85.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Dravida S, Gaddipati S, Griffith M, et al. A biomimetic scaffold for culturing limbal stem cells: a promising alternative for clinical transplantation. J Tissue Eng Regen Med. 2008;2:263–71.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Sangwan VS, Basu S, MacNeil S, Balasubramanian D. Simple limbal epithelial transplantation (SLET): a novel surgical technique for the treatment of unilateral limbal stem cell deficiency. Br J Ophthalmol. 2012;96:931–4.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Di Girolamo N, Bosch M, Zamora K, Coroneo MT, Wakefield D, Watson SL. A contact lens-based technique for expansion and transplantation of autologous epithelial progenitors for ocular surface reconstruction. Transplantation. 2009;87:1571–8.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Sehic A, Utheim OA, Ommundsen K, Utheim TP. Pre-clinical cell-based therapy for Limbal stem cell deficiency. J Funct Biomater. 2015;6:863–88.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Chun YS, Park IK, Kim JC. Technique for autologous nasal mucosa transplantation in severe ocular surface disease. Eur J Ophthalmol. 2011;21:545–51.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Kim JH, Chun YS, Lee SH, et al. Ocular surface reconstruction with autologous nasal mucosa in cicatricial ocular surface disease. Am J Ophthalmol. 2010;149:45–53.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Monteiro BG, Serafim RC, Melo GB, et al. Human immature dental pulp stem cells share key characteristic features with limbal stem cells. Cell Prolif. 2009;42:587–94.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Gomes JA, Geraldes Monteiro B, Melo GB, et al. Corneal reconstruction with tissue-engineered cell sheets composed of human immature dental pulp stem cells. Invest Ophthalmol Vis Sci. 2010;51:1408–14.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Meyer-Blazejewska EA, Call MK, Yamanaka O, et al. From hair to cornea: toward the therapeutic use of hair follicle-derived stem cells in the treatment of limbal stem cell deficiency. Stem Cells. 2011;29:57–66.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Garzon I, Martin-Piedra MA, Alfonso-Rodriguez C, et al. Generation of a biomimetic human artificial cornea model using Wharton’s jelly mesenchymal stem cells. Invest Ophthalmol Vis Sci. 2014;55:4073–83.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Reza HM, Ng BY, Gimeno FL, Phan TT, Ang LP. Umbilical cord lining stem cells as a novel and promising source for ocular surface regeneration. Stem Cell Rev. 2011;7:935–47.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Omoto M, Miyashita H, Shimmura S, et al. The use of human mesenchymal stem cell-derived feeder cells for the cultivation of transplantable epithelial sheets. Invest Ophthalmol Vis Sci. 2009;50:2109–15.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Rohaina CM, Then KY, Ng AM, et al. Reconstruction of limbal stem cell deficient corneal surface with induced human bone marrow mesenchymal stem cells on amniotic membrane. Transl Res. 2014;163:200–10.PubMedCrossRefGoogle Scholar
  53. 53.
    Lin KJ, Loi MX, Lien GS, et al. Topical administration of orbital fat-derived stem cells promotes corneal tissue regeneration. Stem Cell Res Ther. 2013;4:72.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Hayashi R, Ishikawa Y, Ito M, et al. Generation of corneal epithelial cells from induced pluripotent stem cells derived from human dermal fibroblast and corneal limbal epithelium. PLoS One. 2012;7:e45435.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Ang LP, Tanioka H, Kawasaki S, et al. Cultivated human conjunctival epithelial transplantation for total limbal stem cell deficiency. Invest Ophthalmol Vis Sci. 2010;51:758–64.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Sangwan VS, Vemuganti GK, Singh S, Balasubramanian D. Successful reconstruction of damaged ocular outer surface in humans using limbal and conjunctival stem cell culture methods. Biosci Rep. 2003;23:169–74.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Sangwan VS, Vemuganti GK, Iftekhar G, Bansal AK, Rao GN. Use of autologous cultured limbal and conjunctival epithelium in a patient with severe bilateral ocular surface disease induced by acid injury: a case report of unique application. Cornea. 2003;22:478–81.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Subramaniam SV, Sejpal K, Fatima A, Gaddipati S, Vemuganti GK, Sangwan VS. Coculture of autologous limbal and conjunctival epithelial cells to treat severe ocular surface disorders: long-term survival analysis. Indian J Ophthalmol. 2013;61:202–7.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Tan DT, Ang LP, Beuerman RW. Reconstruction of the ocular surface by transplantation of a serum-free derived cultivated conjunctival epithelial equivalent. Transplantation. 2004;77:1729–34.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Burillon C, Huot L, Justin V, et al. Cultured autologous oral mucosal epithelial cell sheet (CAOMECS) transplantation for the treatment of corneal limbal epithelial stem cell deficiency. Invest Ophthalmol Vis Sci. 2012;53:1325–31.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Inatomi T, Nakamura T, Kojyo M, Koizumi N, Sotozono C, Kinoshita S. Ocular surface reconstruction with combination of cultivated autologous oral mucosal epithelial transplantation and penetrating keratoplasty. Am J Ophthalmol. 2006;142:757–64.PubMedCrossRefGoogle Scholar
  62. 62.
    Nakamura T, Takeda K, Inatomi T, Sotozono C, Kinoshita S. Long-term results of autologous cultivated oral mucosal epithelial transplantation in the scar phase of severe ocular surface disorders. Br J Ophthalmol. 2011;95:942–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Nishida K, Yamato M, Hayashida Y, et al. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med. 2004;351:1187–96.PubMedCrossRefGoogle Scholar
  64. 64.
    Takeda K, Nakamura T, Inatomi T, Sotozono C, Watanabe A, Kinoshita S. Ocular surface reconstruction using the combination of autologous cultivated oral mucosal epithelial transplantation and eyelid surgery for severe ocular surface disease. Am J Ophthalmol. 2011;152:195–201. e1PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Utheim TP. Concise review: transplantation of cultured oral mucosal epithelial cells for treating limbal stem cell deficiency-current status and future perspectives. Stem Cells. 2015;33:1685–95.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Ahmad S, Stewart R, Yung S, et al. Differentiation of human embryonic stem cells into corneal epithelial-like cells by in vitro replication of the corneal epithelial stem cell niche. Stem Cells. 2007;25:1145–55.PubMedCrossRefGoogle Scholar
  67. 67.
    Zhang C, Du L, Pang K, Wu X. Differentiation of human embryonic stem cells into corneal epithelial progenitor cells under defined conditions. PLoS One. 2017;12:e0183303.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Reza HM, Ng BY, Phan TT, Tan DT, Beuerman RW, Ang LP. Characterization of a novel umbilical cord lining cell with CD227 positivity and unique pattern of P63 expression and function. Stem Cell Rev. 2011;7:624–38.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Zieske JD. Corneal development associated with eyelid opening. Int J Dev Biol. 2004;48:903–11.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Meek KM, Knupp C. Corneal structure and transparency. Prog Retin Eye Res. 2015;49:1–16.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Carlson EC, Wang IJ, Liu CY, Brannan P, Kao CW, Kao WW. Altered KSPG expression by keratocytes following corneal injury. Mol Vis. 2003;9:615–23.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Jester JV, Petroll WM, Cavanagh HD. Corneal stromal wound healing in refractive surgery: the role of myofibroblasts. Prog Retin Eye Res. 1999;18:311–56.PubMedCrossRefGoogle Scholar
  73. 73.
    Fini ME. Keratocyte and fibroblast phenotypes in the repairing cornea. Prog Retin Eye Res. 1999;18:529–51.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Buss DG, Giuliano EA, Sharma A, Mohan RR. Isolation and cultivation of equine corneal keratocytes, fibroblasts and myofibroblasts. Vet Ophthalmol. 2010;13:37–42.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Patel DV, McKelvie J, Sherwin T, McGhee C. Keratocyte progenitor cell transplantation: a novel therapeutic strategy for corneal disease. Med Hypotheses. 2013;80:122–4.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Basu S, Hertsenberg AJ, Funderburgh ML, et al. Human limbal biopsy-derived stromal stem cells prevent corneal scarring. Sci Transl Med. 2014;6:266ra172.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Wu J, Rnjak-Kovacina J, Du Y, Funderburgh ML, Kaplan DL, Funderburgh JL. Corneal stromal bioequivalents secreted on patterned silk substrates. Biomaterials. 2014;35:3744–55.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Du Y, Sundarraj N, Funderburgh ML, Harvey SA, Birk DE, Funderburgh JL. Secretion and organization of a cornea-like tissue in vitro by stem cells from human corneal stroma. Invest Ophthalmol Vis Sci. 2007;48:5038–45.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Naylor RW, McGhee CN, Cowan CA, Davidson AJ, Holm TM, Sherwin T. Derivation of corneal Keratocyte-like cells from human induced pluripotent stem cells. PLoS One. 2016;11:e0165464.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Bahn CF, Falls HF, Varley GA, Meyer RF, Edelhauser HF, Bourne WM. Classification of corneal endothelial disorders based on neural crest origin. Ophthalmology. 1984;91:558–63.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Hatou S, Yamada M, Mochizuki H, Shiraishi A, Joko T, Nishida T. The effects of dexamethasone on the Na,K-ATPase activity and pump function of corneal endothelial cells. Curr Eye Res. 2009;34:347–54.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Kinoshita S, Koizumi N, Ueno M, Okumura N, Imai K, Tanaka H, Yamamoto Y, Nakamura T, Inatomi T, Bush J, Toda M, Hagiya M, Yokota I, Teramukai S, Sotozono C, Hamuro J. Injection of cultured cells with a ROCK inhibitor for bullous keratopathy. N Engl J Med. 2018;378(11):995–1003. PMID:29539291.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J. 2008;17(Suppl 4):467–79.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Grinstaff MW. Designing hydrogel adhesives for corneal wound repair. Biomaterials. 2007;28:5205–14.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Rafat M, Li F, Fagerholm P, et al. PEG-stabilized carbodiimide crosslinked collagen-chitosan hydrogels for corneal tissue engineering. Biomaterials. 2008;29:3960–72.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Aldave AJ, Kamal KM, Vo RC, Yu F. The Boston type I keratoprosthesis: improving outcomes and expanding indications. Ophthalmology. 2009;116:640–51.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Zorlutuna P, Tezcaner A, Kiyat I, Aydinli A, Hasirci V. Cornea engineering on polyester carriers. J Biomed Mater Res A. 2006;79:104–13.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Liu L, Sheardown H. Glucose permeable poly (dimethyl siloxane) poly (N-isopropyl acrylamide) interpenetrating networks as ophthalmic biomaterials. Biomaterials. 2005;26:233–44.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Deng ZX, Zhang ZX, Li LH, Zhou CR. Biocompatibility evaluation of chitosan-g-polyvinylpyrrolidone. Di Yi Jun Yi Da Xue Xue Bao. 2004;24:639–41.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Bae SR, Park C, Choi JC, Poo H, Kim CJ, Sung MH. Effects of ultra high molecular weight poly-gamma-glutamic acid from Bacillus subtilis (chungkookjang) on corneal wound healing. J Microbiol Biotechnol. 2010;20:803–8.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Sharma CP. Biointegration of medical implant materials: science and design. New York: Elsevier Science; 2010.CrossRefGoogle Scholar
  92. 92.
    Li F, Griffith M, Li Z, et al. Recruitment of multiple cell lines by collagen-synthetic copolymer matrices in corneal regeneration. Biomaterials. 2005;26:3093–104.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Duan X, Sheardown H. Dendrimer crosslinked collagen as a corneal tissue engineering scaffold: mechanical properties and corneal epithelial cell interactions. Biomaterials. 2006;27:4608–17.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    McLaughlin CR, Acosta MC, Luna C, et al. Regeneration of functional nerves within full thickness collagen-phosphorylcholine corneal substitute implants in guinea pigs. Biomaterials. 2010;31:2770–8.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Liu W, Deng C, McLaughlin CR, et al. Collagen-phosphorylcholine interpenetrating network hydrogels as corneal substitutes. Biomaterials. 2009;30:1551–9.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Duan X, McLaughlin C, Griffith M, Sheardown H. Biofunctionalization of collagen for improved biological response: scaffolds for corneal tissue engineering. Biomaterials. 2007;28:78–88.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Lai JY, Li YT. Functional assessment of cross-linked porous gelatin hydrogels for bioengineered cell sheet carriers. Biomacromolecules. 2010;11:1387–97.PubMedCrossRefGoogle Scholar
  98. 98.
    Alaminos M, Del Carmen Sanchez-Quevedo M, Munoz-Avila JI, et al. Construction of a complete rabbit cornea substitute using a fibrin-agarose scaffold. Invest Ophthalmol Vis Sci. 2006;47:3311–7.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Lawrence BD, Marchant JK, Pindrus MA, Omenetto FG, Kaplan DL. Silk film biomaterials for cornea tissue engineering. Biomaterials. 2009;30:1299–308.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Grolik M, Szczubialka K, Wowra B, et al. Hydrogel membranes based on genipin-cross-linked chitosan blends for corneal epithelium tissue engineering. J Mater Sci Mater Med. 2012;23:1991–2000.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Vrana NE, Builles N, Justin V, et al. Development of a reconstructed cornea from collagen-chondroitin sulfate foams and human cell cultures. Invest Opthalmol Vis Sci. 2008;49:5325–31.CrossRefGoogle Scholar
  102. 102.
    Maia J, Ribeiro MP, Ventura C, Carvalho RA, Correia IJ, Gil MH. Ocular injectable formulation assessment for oxidized dextran-based hydrogels. Acta Biomater. 2009;5:1948–55.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Fiorica C, Senior RA, Pitarresi G, et al. Biocompatible hydrogels based on hyaluronic acid cross-linked with a polyaspartamide derivative as delivery systems for epithelial limbal cells. Int J Pharm. 2011;414:104–11.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Tonsomboon K, Oyen ML. Composite electrospun gelatin fiber-alginate gel scaffolds for mechanically robust tissue engineered cornea. J Mech Behav Biomed. 2013;21:185–94.CrossRefGoogle Scholar
  105. 105.
    Hamley IW, Dehsorkhi A, Castelletto V, et al. Self-assembly and collagen-stimulating activity of a peptide Amphiphile incorporating a peptide sequence from Lumican. Langmuir. 2015;31:4490–5.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Gouveia RM, González-Andrades E, Cardona JC, González-Gallardo C, Ionescu AM, Garzon I, Alaminos M, González-Andrades M, Connon CJ. Controlling the 3D architecture of Self-Lifting Auto-generated Tissue Equivalents (SLATEs) for optimized corneal graft composition and stability. Biomaterials. 2017;121:205–19. Epub 2016 Dec 23. PMID: 28092777.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Islam MM, Ravichandran R, Olsen D, et al. Self-assembled collagen-like-peptide implants as alternatives to human donor corneal transplantation. RSC Adv. 2016;6:55745–9.CrossRefGoogle Scholar
  108. 108.
    Jangamreddy JR, Haagdorens MKC, Mirazul Islam M, et al. Short peptide analogs as alternatives to collagen in pro-regenerative corneal implants. Acta Biomaterialia. 2018. pii: S1742–7061(18)30022–9; Scholar
  109. 109.
    Kumano Y, Sakamoto T, Egawa M, Tanaka M, Yamamoto I. Enhancing effect of 2-O-alpha-D-glucopyranosyl-L-ascorbic acid, a stable ascorbic acid derivative, on collagen synthesis. Biol Pharm Bull. 1998;21:662–6.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Saika S. Ultrastructural effect of L-ascorbic acid 2-phosphate on cultured keratocytes. Cornea. 1992;11:439–45.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Cissell DD, Hu JC, Griffiths LG, Athanasiou KA. Antigen removal for the production of biomechanically functional, xenogeneic tissue grafts. J Biomech. 2014;47:1987–96.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006;27:3675–83.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Vorotnikova E, McIntosh D, Dewilde A, et al. Extracellular matrix-derived products modulate endothelial and progenitor cell migration and proliferation in vitro and stimulate regenerative healing in vivo. Matrix Biol. 2010;29:690–700.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Barkan D, Green JE, Chambers AF. Extracellular matrix: a gatekeeper in the transition from dormancy to metastatic growth. Eur J Cancer. 2010;46:1181–8.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Petersen TH, Calle EA, Zhao L, et al. Tissue-engineered lungs for in vivo implantation. Science. 2010;329:538–41.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32:3233–43.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Gonzalez-Andrades M, de la Cruz Cardona J, Ionescu AM, Campos A, Del Mar Perez M, Alaminos M. Generation of bioengineered corneas with decellularized xenografts and human keratocytes. Invest Ophthalmol Vis Sci. 2011;52:215–22.CrossRefGoogle Scholar
  118. 118.
    Brown BN, Valentin JE, Stewart-Akers AM, McCabe GP, Badylak SF. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials. 2009;30:1482–91.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Zhang MC, Liu X, Jin Y, Jiang DL, Wei XS, Xie HT. Lamellar Keratoplasty treatment of fungal corneal ulcers with acellular porcine corneal stroma. Am J Transplant. 2015;15:1068–75.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Nishida T, Nakamura M, Ofuji K, Reid TW, Mannis MJ, Murphy CJ. Synergistic effects of substance P with insulin-like growth factor-1 on epithelial migration of the cornea. J Cell Physiol. 1996;169:159–66.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Holan V, Trosan P, Krulova M, Zajicova A. Identification of factors regulating differentiation and growth of limbal stem cells for corneal surface regeneration. Acta Ophthalmologica. 2012;90:0.CrossRefGoogle Scholar
  122. 122.
    Zieske JD, Takahashi H, Hutcheon AE, Dalbone AC. Activation of epidermal growth factor receptor during corneal epithelial migration. Invest Ophthalmol Vis Sci. 2000;41:1346–55.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Wilson SE, Walker JW, Chwang EL, He YG. Hepatocyte growth factor, keratinocyte growth factor, their receptors, fibroblast growth factor receptor-2, and the cells of the cornea. Invest Ophthalmol Vis Sci. 1993;34:2544–61.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Daniels JT, Limb GA, Saarialho-Kere U, Murphy G, Khaw PT. Human corneal epithelial cells require MMP-1 for HGF-mediated migration on collagen I. Invest Ophthalmol Vis Sci. 2003;44:1048–55.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Kakazu A, Chandrasekher G, Bazan HE. HGF protects corneal epithelial cells from apoptosis by the PI-3K/Akt-1/Bad- but not the ERK1/2-mediated signaling pathway. Invest Ophthalmol Vis Sci. 2004;45:3485–92.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Wilson SE, Li Q, Mohan RR, et al. Lacrimal gland growth factors and receptors: lacrimal fibroblastic cells are a source of tear HGF. Adv Exp Med Biol. 1998;438:625–8.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Haber M, Cao Z, Panjwani N, Bedenice D, Li WW, Provost PJ. Effects of growth factors (EGF, PDGF-BB and TGF-beta 1) on cultured equine epithelial cells and keratocytes: implications for wound healing. Vet Ophthalmol. 2003;6:211–7.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Andresen JL, Ledet T, Ehlers N. Keratocyte migration and peptide growth factors: the effect of PDGF, bFGF, EGF, IGF-I, aFGF and TGF-beta on human keratocyte migration in a collagen gel. Curr Eye Res. 1997;16:605–13.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Jester JV, Huang J, Fisher S, et al. Myofibroblast differentiation of normal human keratocytes and hTERT, extended-life human corneal fibroblasts. Invest Ophthalmol Vis Sci. 2003;44:1850–8.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Daniels JT, Khaw PT. Temporal stimulation of corneal fibroblast wound healing activity by differentiating epithelium in vitro. Invest Ophthalmol Vis Sci. 2000;41:3754–62.PubMedPubMedCentralGoogle Scholar
  131. 131.
    Bonini S, Lambiase A, Rama P, Caprioglio G, Aloe L. Topical treatment with nerve growth factor for neurotrophic keratitis. Ophthalmology. 2000;107:1347–51; discussion 51–2.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Cellini M, Bendo E, Bravetti GO, Campos EC. The use of nerve growth factor in surgical wound healing of the cornea. Ophthalmic Res. 2006;38:177–81.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Ma K, Yan N, Huang Y, Cao G, Deng J, Deng Y. Effects of nerve growth factor on nerve regeneration after corneal nerve damage. Int J Clin Exp Med. 2014;7:4584–9.PubMedPubMedCentralGoogle Scholar
  134. 134.
    McLaughlin PJ, Sassani JW, Klocek MS, Zagon IS. Diabetic keratopathy and treatment by modulation of the opioid growth factor (OGF)-OGF receptor (OGFr) axis with naltrexone: a review. Brain Res Bull. 2010;81:236–47.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Nakamura Y, Sotozono C, Kinoshita S. The epidermal growth factor receptor (EGFR): role in corneal wound healing and homeostasis. Exp Eye Res. 2001;72:511–7.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Yanai R, Yamada N, Inui M, Nishida T. Correlation of proliferative and anti-apoptotic effects of HGF, insulin, IGF-1, IGF-2, and EGF in SV40-transformed human corneal epithelial cells. Exp Eye Res. 2006;83:76–83.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Chandrasekher G, Kakazu AH, Bazan HE. HGF- and KGF-induced activation of PI-3K/p70 s6 kinase pathway in corneal epithelial cells: its relevance in wound healing. Exp Eye Res. 2001;73:191–202.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Lee JG, Kay EP. FGF-2-induced wound healing in corneal endothelial cells requires Cdc42 activation and Rho inactivation through the phosphatidylinositol 3-kinase pathway. Invest Ophthalmol Vis Sci. 2006;47:1376–86.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Trosan P, Svobodova E, Chudickova M, Krulova M, Zajicova A, Holan V. The key role of insulin-like growth factor I in limbal stem cell differentiation and the corneal wound-healing process. Stem Cells Dev. 2012;21:3341–50.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Pancholi S, Tullo A, Khaliq A, Foreman D, Boulton M. The effects of growth factors and conditioned media on the proliferation of human corneal epithelial cells and keratocytes. Graefes Arch Clin Exp Ophthalmol. 1998;236:1–8.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Kay EP, Lee MS, Seong GJ, Lee YG. TGF-beta s stimulate cell proliferation via an autocrine production of FGF-2 in corneal stromal fibroblasts. Curr Eye Res. 1998;17:286–93.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Denk PO, Knorr M. The in vitro effect of platelet-derived growth factor isoforms on the proliferation of bovine corneal stromal fibroblasts depends on cell density. Graefes Arch Clin Exp Ophthalmol. 1997;235:530–4.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Kamiyama K, Iguchi I, Wang X, Imanishi J. Effects of PDGF on the migration of rabbit corneal fibroblasts and epithelial cells. Cornea. 1998;17:315–25.PubMedCrossRefGoogle Scholar
  144. 144.
    Sosne G, Siddiqi A, Kurpakus-Wheater M. Thymosin-beta4 inhibits corneal epithelial cell apoptosis after ethanol exposure in vitro. Invest Ophthalmol Vis Sci. 2004;45:1095–100.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Sosne G, Qiu P, Ousler GW 3rd, Dunn SP, Crockford D. Thymosin beta4: a potential novel dry eye therapy. Ann N Y Acad Sci. 2012;1270:45–50.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Dunn SP, Heidemann DG, Chow CY, et al. Treatment of chronic nonhealing neurotrophic corneal epithelial defects with thymosin beta4. Ann N Y Acad Sci. 2010;1194:199–206.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Lambiase A, Bonini S, Micera A, Rama P, Bonini S, Aloe L. Expression of nerve growth factor receptors on the ocular surface in healthy subjects and during manifestation of inflammatory diseases. Invest Ophthalmol Vis Sci. 1998;39:1272–5.PubMedPubMedCentralGoogle Scholar
  148. 148.
    Lambiase A, Bonini S, Aloe L, Rama P, Bonini S. Anti-inflammatory and healing properties of nerve growth factor in immune corneal ulcers with stromal melting. Arch Ophthalmol. 2000;118:1446–9.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Joo M, Yuhan KR, Hyon J, et al. The effect of nerve growth factor on corneal sensitivity after laserin situ keratomileusis. Arch Ophthalmol. 2004;122:1338–41.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Zagon IS, Sassani JW, McLaughlin PJ. Opioid growth factor modulates corneal epithelial outgrowth in tissue culture. Am J Phys. 1995;268:R942–50.Google Scholar
  151. 151.
    Wang L, Gonzalez S, Dai W, Deng S, Lu L. Effect of hypoxia-regulated polo-like kinase 3 (Plk3) on human Limbal stem cell differentiation. J Biol Chem. 2016;291:16519–29.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Hu N, Zhang YY, Gu HW, Guan HJ. Effects of bone marrow mesenchymal stem cells on cell proliferation and growth factor expression of limbal epithelial cells in vitro. Ophthalmic Res. 2012;48:82–8.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Gonfiotti A, Jaus MO, Barale D, et al. The first tissue-engineered airway transplantation: 5-year follow-up results. Lancet. 2014;383:238–44.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Hibino N, McGillicuddy E, Matsumura G, et al. Late-term results of tissue-engineered vascular grafts in humans. J Thorac Cardiovasc Surg. 2010;139:431–6. 6.e1–2.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 2006;367:1241–6.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Alió del Barrio JL, El Zarif M, Azaar A, et al. Corneal stroma enhancement with decellularized stromal laminas with or without stem cell recellularization for advanced keratoconus. Am J Ophthalmol. 2018;186:47–58.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Fagerholm P, Lagali NS, Ong JA, et al. Stable corneal regeneration four years after implantation of a cell-free recombinant human collagen scaffold. Biomaterials. 2014;35:2420–7.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Buznyk O, Pasyechnikova N, Islam MM, Iakymenko S, Fagerholm P, Griffith M. Bioengineered corneas grafted as alternatives to human donor corneas in three high-risk patients. Clin Transl Sci. 2015;8:558–62.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Islam MM, Buznyk O, Reddy JC, et al. Biomaterials-enabled cornea regeneration in patients at high risk for rejection of donor tissue transplantation. NPJ Regen Med. 2018;3:2.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Gonzalez-Andrades M, Mata R, Gonzalez-Gallardo MDC, et al. A study protocol for a multicentre randomised clinical trial evaluating the safety and feasibility of a bioengineered human allogeneic nanostructured anterior cornea in patients with advanced corneal trophic ulcers refractory to conventional treatment. BMJ Open. 2017;7:e016487.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Massey LK. Chapter 38 – acrylic polycarbonate alloy (Acrylic PC). In: The effect of sterilization methods on plastics and elastomers. 2nd ed. Norwich: William Andrew Publishing; 2005. p. 241–4.CrossRefGoogle Scholar
  162. 162.
    U.S. FDA: Tissue & tissue products. Accessed 13 Dec 2017, at
  163. 163.
    U.S. FDA: Combination product definition. Accessed 13 Dec 2017, at
  164. 164.
    FDA announces comprehensive regenerative medicine policy framework. November 16, 2017. Accessed 11 Dec 2017, at

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mohammad Mirazul Islam
    • 1
  • Roholah Sharifi
    • 1
  • Miguel Gonzalez-Andrades
    • 1
    Email author
  1. 1.Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of OphthalmologyHarvard Medical SchoolBostonUSA

Personalised recommendations