Corneal Endothelial Cell Transplantation: Animal Models

  • Brad P. Barnett
  • Albert S. JunEmail author
Part of the Essentials in Ophthalmology book series (ESSENTIALS)


Historically, animal models have played a vital role in the study of penetrating keratoplasty and more recently in the study of endothelial transplantation. Emerging alternative therapies include the use of cultured cells either to form grafts or as injectable cellular therapy, as opposed to relying on donor tissues as the sole means of cellular replacement. In this chapter we will review the history of animal models used in endothelial transplantation studies. Care will be taken to discuss how other groups have matched experimental aims to the animal model best suited to achieve those aims. For future researchers to determine the best animal model for their purposes, the relative pros and cons of each animal model will also be reviewed.


Animal models Cell transplantation Endothelial cell transplantation Fuchs endothelial dystrophy Keratoplasty 


Compliance Statements

Brad P. Barnett and Albert S. Jun declare that they have no conflict of interest.

No human studies were carried out by the authors for this article.

No animal studies were carried out by the authors for this article.


  1. 1.
    Mimura T, et al. Magnetic attraction of iron-endocytosed corneal endothelial cells to Descemet’s membrane. Exp Eye Res. 2003;76(6):745–51.PubMedCrossRefGoogle Scholar
  2. 2.
    Yamada J, et al. Allogeneic corneal tolerance in rodents with long-term graft survival. Transplantation. 2005;79(10):1362–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Joo CK, et al. Repopulation of denuded murine Descemet’s membrane with life-extended murine corneal endothelial cells as a model for corneal cell transplantation. Graefes Arch Clin Exp Ophthalmol. 2000;238(2):174–80.PubMedCrossRefGoogle Scholar
  4. 4.
    Tchah H. Heterologous corneal endothelial cell transplantation – human corneal endothelial cell transplantation in Lewis rats. J Korean Med Sci. 1992;7(4):337–42.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Mimura T, et al. Sphere therapy for corneal endothelium deficiency in a rabbit model. Invest Ophthalmol Vis Sci. 2005;46(9):3128–35.PubMedCrossRefGoogle Scholar
  6. 6.
    Mimura T, et al. Necessary prone position time for human corneal endothelial precursor transplantation in a rabbit endothelial deficiency model. Curr Eye Res. 2007;32(7–8):617–23.PubMedCrossRefGoogle Scholar
  7. 7.
    Mimura T, et al. Treatment of rabbit bullous keratopathy with precursors derived from cultured human corneal endothelium. Invest Ophthalmol Vis Sci. 2005;46(10):3637–44.PubMedCrossRefGoogle Scholar
  8. 8.
    Lange TM, Wood TO, McLaughlin BJ. Corneal endothelial cell transplantation using Descemet's membrane as a carrier. J Cataract Refract Surg. 1993;19(2):232–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Lai JY, et al. Characterization of cross-linked porous gelatin carriers and their interaction with corneal endothelium: biopolymer concentration effect. PLoS One. 2013;8(1):e54058.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Lai JY, Chen KH, Hsiue GH. Tissue-engineered human corneal endothelial cell sheet transplantation in a rabbit model using functional biomaterials. Transplantation. 2007;84(10):1222–32.CrossRefGoogle Scholar
  11. 11.
    Honda N, et al. Descemet stripping automated endothelial keratoplasty using cultured corneal endothelial cells in a rabbit model. Arch Ophthalmol. 2009;127(10):1321–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Vazquez N, et al. Silk fibroin films for corneal endothelial regeneration: transplant in a rabbit Descemet membrane endothelial Keratoplasty. Invest Ophthalmol Vis Sci. 2017;58(9):3357–65.CrossRefGoogle Scholar
  13. 13.
    Ishino Y, et al. Amniotic membrane as a carrier for cultivated human corneal endothelial cell transplantation. Invest Ophthalmol Vis Sci. 2004;45(3):800–6.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Gospodarowicz D, Greenburg G. The coating of bovine and rabbit corneas denuded of their endothelium with bovine corneal endothelial cells. Exp Eye Res. 1979;28(3):249–65.PubMedCrossRefGoogle Scholar
  15. 15.
    Gospodarowicz D, Greenburg G, Alvarado J. Transplantation of cultured bovine corneal endothelial cells to rabbit cornea: clinical implications for human studies. Proc Natl Acad Sci U S A. 1979;76(1):464–8.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Jumblatt MM, Maurice DM, McCulley JP. Transplantation of tissue-cultured corneal endothelium. Invest Ophthalmol Vis Sci. 1978;17(12):1135–41.PubMedGoogle Scholar
  17. 17.
    Proulx S, et al. Tissue engineering of feline corneal endothelium using a devitalized human cornea as carrier. Tissue Eng Part A. 2009;15(7):1709–18.PubMedCrossRefGoogle Scholar
  18. 18.
    Proulx S, et al. Transplantation of a tissue-engineered corneal endothelium reconstructed on a devitalized carrier in the feline model. Invest Ophthalmol Vis Sci. 2009;50(6):2686–94.CrossRefGoogle Scholar
  19. 19.
    Bahn CF, et al. Penetrating keratoplasty in the cat. A clinically applicable model. Ophthalmology. 1982;89(6):687–99.PubMedCrossRefGoogle Scholar
  20. 20.
    Koizumi N, et al. Cultivated corneal endothelial cell sheet transplantation in a primate model. Invest Ophthalmol Vis Sci. 2007;48(10):4519–26.PubMedCrossRefGoogle Scholar
  21. 21.
    Koizumi N. Cultivated corneal endothelial cell sheet transplantation in a primate model. Nippon Ganka Gakkai Zasshi. 2009;113(11):1050–9.PubMedGoogle Scholar
  22. 22.
    Insler MS, Lopez JG. Transplantation of cultured human neonatal corneal endothelium. Curr Eye Res. 1986;5(12):967–72.PubMedCrossRefGoogle Scholar
  23. 23.
    Insler MS, Lopez JG. Heterologous transplantation versus enhancement of human corneal endothelium. Cornea. 1991;10(2):136–48.PubMedCrossRefGoogle Scholar
  24. 24.
    Insler MS, Lopez JG. Extended incubation times improve corneal endothelial cell transplantation success. Invest Ophthalmol Vis Sci. 1991;32(6):1828–36.PubMedGoogle Scholar
  25. 25.
    Armitage WJ, Tullo AB, Larkin DF. The first successful full-thickness corneal transplant: a commentary on Eduard Zirm’s landmark paper of 1906. Br J Ophthalmol. 2006;90(10):1222–3.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Crawford AZ, Patel DV, McGhee C. A brief history of corneal transplantation: from ancient to modern. Oman J Ophthalmol. 2013;6(Suppl 1):S12–7.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Rycroft B. The corneal graft – past, present and future. Trans Ophthalmol Soc U K. 1965;85:459–517.PubMedGoogle Scholar
  28. 28.
    Rycroft PV. Corneal graft membranes. Trans Ophthalmol Soc U K. 1965;85:317–26.PubMedGoogle Scholar
  29. 29.
    Williams KA, Coster DJ. Penetrating corneal transplantation in the inbred rat: a new model. Invest Ophthalmol Vis Sci. 1985;26(1):23–30.PubMedGoogle Scholar
  30. 30.
    She SC, Steahly LP, Moticka EJ. A method for performing full-thickness, orthotopic, penetrating keratoplasty in the mouse. Ophthalmic Surg. 1990;21(11):781–5.PubMedGoogle Scholar
  31. 31.
    Cohen KL, et al. Cat endothelial morphology after corneal transplant. Curr Eye Res. 1990;9(5):445–50.PubMedCrossRefGoogle Scholar
  32. 32.
    Williams KA, et al. A new model of orthotopic penetrating corneal transplantation in the sheep: graft survival, phenotypes of graft-infiltrating cells and local cytokine production. Aust N Z J Ophthalmol. 1999;27(2):127–35.PubMedCrossRefGoogle Scholar
  33. 33.
    Mimura T, et al. Corneal endothelial regeneration and tissue engineering. Prog Retin Eye Res. 2013;35:1–17.PubMedCrossRefGoogle Scholar
  34. 34.
    Williams KA, et al. A comparison of the effects of topical cyclosporine and topical steroid on rabbit corneal allograft rejection. Transplantation. 1985;39(3):242–4.PubMedCrossRefGoogle Scholar
  35. 35.
    Tuft SJ, Williams KA, Coster DJ. Endothelial repair in the rat cornea. Invest Ophthalmol Vis Sci. 1986;27(8):1199–204.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Lagali N, et al. Donor and recipient endothelial cell population of the transplanted human cornea: a two-dimensional imaging study. Invest Ophthalmol Vis Sci. 2010;51(4):1898–904.PubMedCrossRefGoogle Scholar
  37. 37.
    Barnett BP, et al. Magnetic resonance-guided, real-time targeted delivery and imaging of magnetocapsules immunoprotecting pancreatic islet cells. Nat Med. 2007;13(8):986–91.PubMedCrossRefGoogle Scholar
  38. 38.
    Forss-Petter S, et al. Transgenic mice expressing beta-galactosidase in mature neurons under neuron-specific enolase promoter control. Neuron. 1990;5(2):187–97.PubMedCrossRefGoogle Scholar
  39. 39.
    Himes SR, Shannon MF. Assays for transcriptional activity based on the luciferase reporter gene. Methods Mol Biol. 2000;130:165–74.PubMedGoogle Scholar
  40. 40.
    Barnett BP, et al. Use of perfluorocarbon nanoparticles for non-invasive multimodal cell tracking of human pancreatic islets. Contrast Media Mol Imaging. 2011;6(4):251–9.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Walczak P, et al. Applicability and limitations of MR tracking of neural stem cells with asymmetric cell division and rapid turnover: the case of the shiverer dysmyelinated mouse brain. Magn Reson Med. 2007;58(2):261–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Walczak P, et al. Magnetoelectroporation: improved labeling of neural stem cells and leukocytes for cellular magnetic resonance imaging using a single FDA-approved agent. Nanomedicine. 2006;2(2):89–94.PubMedCrossRefGoogle Scholar
  43. 43.
    Haldi M, et al. Human melanoma cells transplanted into zebrafish proliferate, migrate, produce melanin, form masses and stimulate angiogenesis in zebrafish. Angiogenesis. 2006;9(3):139–51.PubMedCrossRefGoogle Scholar
  44. 44.
    de la Zerda A, et al. Optical coherence contrast imaging using gold nanorods in living mice eyes. Clin Exp Ophthalmol. 2015;43(4):358–66.Google Scholar
  45. 45.
    Omoto M, et al. Mesenchymal stem cells home to inflamed ocular surface and suppress allosensitization in corneal transplantation. Invest Ophthalmol Vis Sci. 2014;55(10):6631–8.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Proulx S, et al. Optimization of culture conditions for porcine corneal endothelial cells. Mol Vis. 2007;13:524–33.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Sonoda Y, Streilein JW. Orthotopic corneal transplantation in mice – evidence that the immunogenetic rules of rejection do not apply. Transplantation. 1992;54(4):694–704.PubMedCrossRefGoogle Scholar
  48. 48.
    Plskova J, et al. Evaluation of corneal graft rejection in a mouse model. Br J Ophthalmol. 2002;86(1):108–13.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Plskova J, et al. Quantitative evaluation of the corneal endothelium in the mouse after grafting. Br J Ophthalmol. 2004;88(9):1209–16.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Khodadoust AA, Silverstein AM. Local graft versus host reactions within the anterior chamber of the eye: the formation of corneal endothelial pocks. Investig Ophthalmol. 1975;14(9):640–7.Google Scholar
  51. 51.
    Khodadoust AA, Silverstein AM. Transplantation and rejection of individual cell layers of the cornea. Investig Ophthalmol. 1969;8(2):180–95.Google Scholar
  52. 52.
    Khodadoust AA, Silverstein AM. Studies on the nature of the privilege enjoyed by corneal allografts. Investig Ophthalmol. 1972;11(3):137–48.Google Scholar
  53. 53.
    Wu M, et al. Age-related changes of corneal endothelial cell in healthy Chinese tree shrew measured by non-contact specular microscope. Int J Ophthalmol. 2017;10(12):1798–804.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Ang M, et al. Evaluation of a micro-optical coherence tomography for the corneal endothelium in an animal model. Sci Rep. 2016;6:29769.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Streilein JW, Niederkorn JY. Induction of anterior chamber-associated immune deviation requires an intact, functional spleen. J Exp Med. 1981;153(5):1058–67.PubMedCrossRefGoogle Scholar
  56. 56.
    Streilein JW, et al. Immunosuppressive properties of tissues obtained from eyes with experimentally manipulated corneas. Invest Ophthalmol Vis Sci. 1996;37(2):413–24.PubMedGoogle Scholar
  57. 57.
    Perez VL, et al. The anterior chamber of the eye as a clinical transplantation site for the treatment of diabetes: a study in a baboon model of diabetes. Diabetologia. 2011;54(5):1121–6.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Hayashi T, et al. Immunologic mechanisms of corneal allografts reconstituted from cultured allogeneic endothelial cells in an immune-privileged site. Invest Ophthalmol Vis Sci. 2009;50(7):3151–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Sonoda Y, Streilein JW. Impaired cell-mediated immunity in mice bearing healthy orthotopic corneal allografts. J Immunol. 1993;150(5):1727–34.PubMedGoogle Scholar
  60. 60.
    Akl A, Luo S, Wood KJ. Induction of transplantation tolerance-the potential of regulatory T cells. Transpl Immunol. 2005;14(3–4):225–30.PubMedCrossRefGoogle Scholar
  61. 61.
    Kang SM, Tang Q, Bluestone JA. CD4+CD25+ regulatory T cells in transplantation: progress, challenges and prospects. Am J Transplant. 2007;7(6):1457–63.PubMedCrossRefGoogle Scholar
  62. 62.
    Tao R, Hancock WW. Regulating regulatory T cells to achieve transplant tolerance. Hepatobiliary Pancreat Dis Int. 2007;6(4):348–57.PubMedGoogle Scholar
  63. 63.
    Yang XF. Factors regulating apoptosis and homeostasis of CD4+ CD25(high) FOXP3+ regulatory T cells are new therapeutic targets. Front Biosci. 2008;13:1472–99.PubMedCrossRefGoogle Scholar
  64. 64.
    Niederkorn JY, Mellon J. Anterior chamber-associated immune deviation promotes corneal allograft survival. Invest Ophthalmol Vis Sci. 1996;37(13):2700–7.PubMedGoogle Scholar
  65. 65.
    The collaborative corneal transplantation studies (CCTS). Effectiveness of histocompatibility matching in high-risk corneal transplantation. The Collaborative Corneal Transplantation Studies Research Group. Arch Ophthalmol. 1992;110(10):1392–403.CrossRefGoogle Scholar
  66. 66.
    Khodadoust AA. Penetrating keratoplasty in the rabbit. Am J Ophthalmol. 1968;66(5):899–905.PubMedCrossRefGoogle Scholar
  67. 67.
    Amano S, Sawa M, Ishii Y. Keratoepithelioplasty in rat: development of a model and histological study. Jpn J Ophthalmol. 1992;36(4):407–16.PubMedGoogle Scholar
  68. 68.
    Mimura T, et al. Transplantation of corneas reconstructed with cultured adult human corneal endothelial cells in nude rats. Exp Eye Res. 2004;79(2):231–7.PubMedCrossRefGoogle Scholar
  69. 69.
    He YG, Ross J, Niederkorn JY. Promotion of murine orthotopic corneal allograft survival by systemic administration of anti-CD4 monoclonal antibody. Invest Ophthalmol Vis Sci. 1991;32(10):2723–8.PubMedGoogle Scholar
  70. 70.
    Joo CK, Pepose JS, Stuart PM. T-cell mediated responses in a murine model of orthotopic corneal transplantation. Invest Ophthalmol Vis Sci. 1995;36(8):1530–40.PubMedGoogle Scholar
  71. 71.
    Haskova Z, Filipec M, Holan V. The role of major and minor histocompatibility antigens in orthotopic corneal transplantation in mice. Folia Biol (Praha). 1996;42(3):105–11.Google Scholar
  72. 72.
    Zhang EP, Schrunder S, Hoffmann F. Orthotopic corneal transplantation in the mouse--a new surgical technique with minimal endothelial cell loss. Graefes Arch Clin Exp Ophthalmol. 1996;234(11):714–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Yamagami S, Tsuru T. Increase in orthotopic murine corneal transplantation rejection rate with anterior synechiae. Invest Ophthalmol Vis Sci. 1999;40(10):2422–6.PubMedGoogle Scholar
  74. 74.
    Hori J, Streilein JW. Dynamics of donor cell persistence and recipient cell replacement in orthotopic corneal allografts in mice. Invest Ophthalmol Vis Sci. 2001;42(8):1820–8.PubMedGoogle Scholar
  75. 75.
    Sonoda KH, Taniguchi M, Stein-Streilein J. Long-term survival of corneal allografts is dependent on intact CD1d-reactive NKT cells. J Immunol. 2002;168(4):2028–34.PubMedCrossRefGoogle Scholar
  76. 76.
    Bourne WM, et al. The effect of splenectomy on corneal graft rejection. Investig Ophthalmol. 1976;15(7):541–2.Google Scholar
  77. 77.
    Thomas JW. An experiment in Keratoplasty. Proc R Soc Med. 1930;23(10):1437–42.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Castroviejo R. Keratoplasty-microscopic study of the corneal grafts. Trans Am Ophthalmol Soc. 1937;35:355–85.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Stansbury FC, Wadsworth JA. Surgical technique of corneal transplantation in rabbits; a discussion of the problems encountered and suggestions for their solution. Am J Ophthalmol. 1947;30(8):968–78.PubMedCrossRefGoogle Scholar
  80. 80.
    Khodadoust AA. Lamellar corneal transplantation in the rabbit. Am J Ophthalmol. 1968;66(6):1111–7.PubMedCrossRefGoogle Scholar
  81. 81.
    Tseng SC, Tsai RJ. Limbal transplantation for ocular surface reconstruction – a review. Fortschr Ophthalmol. 1991;88(3):236–42.PubMedGoogle Scholar
  82. 82.
    Swift GJ, et al. Survival of rabbit limbal stem cell allografts. Transplantation. 1996;62(5):568–74.PubMedCrossRefGoogle Scholar
  83. 83.
    Li QJ, et al. Long-term survival of allogeneic donor cell-derived corneal epithelium in limbal deficient rabbits. Curr Eye Res. 2001;23(5):336–45.PubMedCrossRefGoogle Scholar
  84. 84.
    Amano S. Transplantation of corneal endothelial cells. Nippon Ganka Gakkai Zasshi. 2002;106(12):805–35; discussion 836.PubMedGoogle Scholar
  85. 85.
    Amano S. Transplantation of cultured human corneal endothelial cells. Cornea. 2003;22(7 Suppl):S66–74.PubMedCrossRefGoogle Scholar
  86. 86.
    Quantock AJ, et al. Stromal architecture and immune tolerance in additive corneal xenografts in rodents. Acta Ophthalmol Scand. 2005;83(4):462–6.PubMedCrossRefGoogle Scholar
  87. 87.
    Hori J, Niederkorn JY. Immunogenicity and immune privilege of corneal allografts. Chem Immunol Allergy. 2007;92:290–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Amano S, et al. Decellularizing corneal stroma using N2 gas. Mol Vis. 2008;14:878–82.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Engelmann K, Drexler D, Bohnke M. Transplantation of adult human or porcine corneal endothelial cells onto human recipients in vitro. Part I: cell culturing and transplantation procedure. Cornea. 1999;18(2):199–206.PubMedCrossRefGoogle Scholar
  90. 90.
    Oh JY, et al. Corneal cell viability and structure after transcorneal freezing-thawing in the human cornea. Clin Ophthalmol. 2010;4:477–80.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Mimura T, et al. Long-term outcome of iron-endocytosing cultured corneal endothelial cell transplantation with magnetic attraction. Exp Eye Res. 2005;80(2):149–57.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Patel SV, et al. Human corneal endothelial cell transplantation in a human ex vivo model. Invest Ophthalmol Vis Sci. 2009;50(5):2123–31.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Yokoo S, et al. Human corneal endothelial cell precursors isolated by sphere-forming assay. Invest Ophthalmol Vis Sci. 2005;46(5):1626–31.CrossRefGoogle Scholar
  94. 94.
    Lai JY, Li YT. Functional assessment of cross-linked porous gelatin hydrogels for bioengineered cell sheet carriers. Biomacromolecules. 2010;11(5):1387–97.PubMedCrossRefGoogle Scholar
  95. 95.
    Hill JC, Maske R. An animal model for corneal graft rejection in high-risk keratoplasty. Transplantation. 1988;46(1):26–30.PubMedCrossRefGoogle Scholar
  96. 96.
    Mimura T, et al. Expression of vascular endothelial growth factor C and vascular endothelial growth factor receptor 3 in corneal lymphangiogenesis. Exp Eye Res. 2001;72(1):71–8.PubMedCrossRefGoogle Scholar
  97. 97.
    Eliason JA, McCulley JP. A comparison between interrupted and continuous suturing techniques in keratoplasty. Cornea. 1990;9(1):10–6.PubMedCrossRefGoogle Scholar
  98. 98.
    Cohen RA, et al. Confocal microscopy of corneal graft rejection. Cornea. 1995;14(5):467–72.PubMedCrossRefGoogle Scholar
  99. 99.
    Cho BJ, et al. In vivo confocal microscopic analysis of corneal allograft rejection in rabbits. Cornea. 1998;17(4):417–22.PubMedCrossRefGoogle Scholar
  100. 100.
    Bahn CF, et al. Postnatal development of corneal endothelium. Invest Ophthalmol Vis Sci. 1986;27(1):44–51.Google Scholar
  101. 101.
    Bartholomew LR, et al. Ultrasound biomicroscopy of globes from young adult pigs. Am J Vet Res. 1997;58(9):942–8.PubMedGoogle Scholar
  102. 102.
    Faber C, et al. Orthotopic porcine corneal xenotransplantation using a human graft. Acta Ophthalmol. 2009;87(8):917–9.PubMedCrossRefGoogle Scholar
  103. 103.
    Sanchez I, et al. The parameters of the porcine eyeball. Graefes Arch Clin Exp Ophthalmol. 2011;249(4):475–82.PubMedCrossRefGoogle Scholar
  104. 104.
    Nicholls SM, et al. A model of corneal graft rejection in semi-inbred NIH miniature swine: significant T-cell infiltration of clinically accepted allografts. Invest Ophthalmol Vis Sci. 2012;53(6):3183–92.PubMedCrossRefGoogle Scholar
  105. 105.
    Schroeter J, et al. Influence of temporary hypothermia on corneal endothelial cell density during organ culture preservation. Graefes Arch Clin Exp Ophthalmol. 2008;246(3):369–72.PubMedCrossRefGoogle Scholar
  106. 106.
    Majo F, et al. Oligopotent stem cells are distributed throughout the mammalian ocular surface. Nature. 2008;456(7219):250–4.PubMedCrossRefGoogle Scholar
  107. 107.
    Sweatt AJ, Ford JG, Davis RM. Wound healing following anterior keratectomy and lamellar keratoplasty in the pig. J Refract Surg. 1999;15(6):636–47.PubMedGoogle Scholar
  108. 108.
    Asano-Kato N, et al. Epithelial ingrowth after laser in situ keratomileusis: clinical features and possible mechanisms. Am J Ophthalmol. 2002;134(6):801–7.PubMedCrossRefGoogle Scholar
  109. 109.
    Hwang H, Kim M. Endothelial damage of a donor cornea depending on the donor insertion method during Descemet-stripping automated endothelial keratoplasty in porcine eyes. Jpn J Ophthalmol. 2009;53(5):523–30.PubMedCrossRefGoogle Scholar
  110. 110.
    Mohay J, et al. Transplantation of corneal endothelial cells using a cell carrier device. Cornea. 1994;13(2):173–82.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Bahn CF, et al. Complications associated with bovine corneal endothelial cell-lined homografts in the cat. Invest Ophthalmol Vis Sci. 1982;22(1):73–90.PubMedGoogle Scholar
  112. 112.
    Ling TL, Vannas A, Holden BA. Long-term changes in corneal endothelial morphology following wounding in the cat. Invest Ophthalmol Vis Sci. 1988;29(9):1407–12.PubMedGoogle Scholar
  113. 113.
    Bourne WM, et al. Long-term observation of morphologic and functional features of cat corneal endothelium after wounding. Invest Ophthalmol Vis Sci. 1994;35(3):891–9.PubMedGoogle Scholar
  114. 114.
    Moodie KL, et al. Postnatal development of corneal curvature and thickness in the cat. Vet Ophthalmol. 2001;4(4):267–72.PubMedCrossRefGoogle Scholar
  115. 115.
    Kafarnik C, Fritsche J, Reese S. In vivo confocal microscopy in the normal corneas of cats, dogs and birds. Vet Ophthalmol. 2007;10(4):222–30.PubMedCrossRefGoogle Scholar
  116. 116.
    Reichard M, et al. Comparative in vivo confocal microscopical study of the cornea anatomy of different laboratory animals. Curr Eye Res. 2010;35(12):1072–80.PubMedCrossRefGoogle Scholar
  117. 117.
    Van Horn DL, Hyndiuk RA. Endothelial wound repair in primate cornea. Exp Eye Res. 1975;21(2):113–24.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Petroll WM, et al. Organization of junctional proteins in proliferating cat corneal endothelium during wound healing. Cornea. 2001;20(1):73–80.PubMedCrossRefGoogle Scholar
  119. 119.
    Melles GR, et al. A surgical technique for posterior lamellar keratoplasty. Cornea. 1998;17(6):618–26.PubMedCrossRefGoogle Scholar
  120. 120.
    Lopatin DE, et al. Changes in aqueous immunoglobulin and albumin levels following penetrating keratoplasty. Invest Ophthalmol Vis Sci. 1989;30(1):122–31.PubMedGoogle Scholar
  121. 121.
    Tripoli NK, Cohen KL, Proia AD. Cat keratoplasty wound healing and corneal astigmatism. Refract Corneal Surg. 1992;8(3):196–203.PubMedGoogle Scholar
  122. 122.
    Ohno K, et al. Keratocyte activation and apoptosis in transplanted human corneas in a xenograft model. Invest Ophthalmol Vis Sci. 2002;43(4):1025–31.PubMedGoogle Scholar
  123. 123.
    Ohno K, et al. Transplantation of cryopreserved human corneas in a xenograft model. Cryobiology. 2002;44(2):142–9.PubMedCrossRefGoogle Scholar
  124. 124.
    Brunette I, et al. Comparison of the pig and feline models for full thickness corneal transplantation. Vet Ophthalmol. 2011;14(6):365–77.PubMedCrossRefGoogle Scholar
  125. 125.
    Proulx S, Brunette I. Methods being developed for preparation, delivery and transplantation of a tissue-engineered corneal endothelium. Exp Eye Res. 2012;95(1):68–75.PubMedCrossRefGoogle Scholar
  126. 126.
    Okumura N, et al. The new therapeutic concept of using a rho kinase inhibitor for the treatment of corneal endothelial dysfunction. Cornea. 2011;30(Suppl 1):S54–9.CrossRefGoogle Scholar
  127. 127.
    Zurawski CA, et al. Corneal biometrics of the rhesus monkey (Macaca mulatta). J Med Primatol. 1989;18(6):461–6.PubMedGoogle Scholar
  128. 128.
    Jackson AJ, Gardiner T, Archer DB. Morphometric analysis of corneal endothelial giant cells in normal and traumatized corneas. Ophthalmic Physiol Opt. 1995;15(4):305–10.PubMedCrossRefGoogle Scholar
  129. 129.
    Ollivier FJ, et al. Corneal thickness and endothelial cell density measured by non-contact specular microscopy and pachymetry in rhesus macaques (Macaca mulatta) with laser-induced ocular hypertension. Exp Eye Res. 2003;76(6):671–7.PubMedCrossRefGoogle Scholar
  130. 130.
    Matsubara M, Tanishima T. Wound-healing of corneal endothelium in monkey: an autoradiographic study. Jpn J Ophthalmol. 1983;27(3):444–50.PubMedGoogle Scholar
  131. 131.
    Jie Y, et al. Survival of pig-to-rhesus corneal xenografts prolonged by prior donor bone marrow transplantation. Mol Med Rep. 2013;7(3):869–74.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Wilmer Eye Institute at Johns Hopkins, Department of OphthalmologyBaltimoreUSA
  2. 2.Division of Cornea, Cataract and External Eye DiseasesBaltimoreUSA

Personalised recommendations