Advertisement

Corneal Endothelium: Isolation and Cultivation Methods

  • David Mingo-Botín
  • Marie Joan Therese D. Balgos
  • Francisco Arnalich-Montiel
Chapter
Part of the Essentials in Ophthalmology book series (ESSENTIALS)

Abstract

The corneal endothelium maintains corneal transparency, and endothelial cell function depends on cell density and quality – with physiologic decline noted from childhood to adulthood. When this process is accelerated due to injuries or endothelial pathologies, irreversible corneal edema occurs. Traditionally transplantation has been the recourse for replacement of diseased corneal tissue; however this is limited by availability of cadaveric corneal tissue donor sources. There is considerable interest in developing suitable alternatives for donor endothelial graft material.

Recent advances have made possible the isolation and culture of suitable and viable human endothelial cells (HCEC) from various sources – whether from primary HCECs, established cell lines, or stem cells. Synthetic, biosynthetic, and organic substrates are also being investigated as carriers for the cultured cells. Current research is aimed at performing the culture process under xeno-free conditions. In conclusion, great progress has been made due to advances in knowledge of the HCEC cell cycle and the development of techniques for cell culture. This makes the application of tissue engineering for patients with corneal endothelial disease a distinct possibility in the near future.

Keywords

Corneal endothelium Corneal endothelial dysfunction Bullous keratopathy Cell culture Tissue engineering Transplantation 

Notes

Compliance with Ethical Requirements

David Mingo-Botín, Marie Joan Therese Dr. Balgos, and Francisco Arnalich-Montiel declare that they have no conflict of interest. No human or animal studies were carried out by the authors for this article.

References

  1. 1.
    Edelhauser HF. The balance between corneal transparency and edema the proctor lecture. Invest Opthalmol Vis Sci. 2006;47(5):1755.CrossRefGoogle Scholar
  2. 2.
    Srinivas SP. Dynamic regulation of barrier integrity of the corneal endothelium. Optom Vis Sci. 2010;87(4):1.CrossRefGoogle Scholar
  3. 3.
    Joyce NC. Proliferative capacity of corneal endothelial cells. Exp Eye Res. 2012;95(1):16–23.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Cui Y-B, Wu J. Research progress on the negative factors of corneal endothelial cells proliferation. Int J Ophthalmol. 2012;5(5):614–9.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Yee RW, Geroski DH, Matsuda M, Champeau EJ, Meyer LA, Edelhauser HF. Correlation of corneal endothelial pump site density, barrier function, and morphology in wound repair. Invest Ophthalmol Vis Sci. 1985;26(9):1191–201.PubMedGoogle Scholar
  6. 6.
    Yee RW, Matsuda M, Schultz RO, Edelhauser HF. Changes in the normal corneal endothelial cellular pattern as a function of age. Curr Eye Res. 1985;4(6):671–8.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Wong KH, Kam KW, Chen LJ, Young AL. Corneal blindness and current major treatment concern-graft scarcity. Int J Ophthalmol. 2017;10(7):1154–62.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Pascolini D, Mariotti SP. Global estimates of visual impairment: 2010. Br J Ophthalmol. 2012;96(5):614–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Gain P, Jullienne R, He Z, Aldossary M, Acquart S, Cognasse F, et al. Global survey of corneal transplantation and eye banking. JAMA Ophthalmol. 2016;134(2):167.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Güell JL, El Husseiny MA, Manero F, Gris O, Elies D. Historical review and update of surgical treatment for corneal endothelial diseases. Ophthalmol Therapy. 2014;3(1–2):1–15.CrossRefGoogle Scholar
  11. 11.
    Lamm V, Hara H, Mammen A, Dhaliwal D, Cooper DKC. Corneal blindness and xenotransplantation. Xenotransplantation. 2014;21(2):99–114.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Borderie VM, Boëlle P-Y, Touzeau O, Allouch C, Boutboul S, Laroche L. Predicted long-term outcome of corneal transplantation. Ophthalmology. 2009;116(12):2354–60.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Vajpayee RB, Sharma N, Jhanji V, Titiyal JS, Tandon R. One donor cornea for 3 recipients: a new concept for corneal transplantation surgery. Arch Ophthalmol (Chicago Ill 1960). 2007;125(4):552–4.CrossRefGoogle Scholar
  14. 14.
    Okumura N, Koizumi N, Ueno M, Sakamoto Y, Takahashi H, Tsuchiya H, et al. ROCK inhibitor converts corneal endothelial cells into a phenotype capable of regenerating in vivo endothelial tissue. Am J Pathol. 2012;181(1):268–77.CrossRefGoogle Scholar
  15. 15.
    Koizumi N, Sakamoto Y, Okumura N, Tsuchiya H, Torii R, Cooper LJ, et al. Cultivated corneal endothelial transplantation in a primate: possible future clinical application in corneal endothelial regenerative medicine. Cornea. 2008;27 Suppl 1:S48–55.PubMedCrossRefGoogle Scholar
  16. 16.
    Okumura N, Koizumi N, Kay EP, Ueno M, Sakamoto Y, Nakamura S, et al. The ROCK inhibitor eye drop accelerates corneal endothelium wound healing. Invest Ophthalmol Vis Sci. 2013;54(4):2493–502.CrossRefGoogle Scholar
  17. 17.
    Okumura N, Kinoshita S, Koizumi N. Application of rho kinase inhibitors for the treatment of corneal endothelial diseases. J Ophthalmol. 2017;2017:1–8.Google Scholar
  18. 18.
    Pipparelli A, Arsenijevic Y, Thuret G, Gain P, Nicolas M, Majo F. ROCK inhibitor enhances adhesion and wound healing of human corneal endothelial cells. Connon CJ, editor. PLoS One. 2013;8(4):e62095.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Proulx S, Brunette I. Methods being developed for preparation, delivery and transplantation of a tissue-engineered corneal endothelium. Exp Eye Res. 2012;95(1):68–75.CrossRefGoogle Scholar
  20. 20.
    De Miguel MP, Alio JL, Arnalich-Montiel F, Fuentes-Julian S, de Benito-Llopis L, Amparo F, et al. Cornea and ocular surface treatment. Curr Stem Cell Res Ther. 2010;5(2):195–204.PubMedCrossRefGoogle Scholar
  21. 21.
    Mannagh J, Irving AR. Human corneal endothelium: growth in tissue cultures. Arch Ophthalmol (Chicago Ill 1960). 1965;74(6):847–9.CrossRefGoogle Scholar
  22. 22.
    Zavala J, López Jaime GR, Rodríguez Barrientos CA, Valdez-Garcia J. Corneal endothelium: developmental strategies for regeneration. Eye. 2013;27(5):579–88.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Zhu C, Joyce NC. Proliferative Response of Corneal Endothelial Cells from Young and Older Donors. Invest Opthalmol Vis Sci. 2004;45(6):1743.CrossRefGoogle Scholar
  24. 24.
    Senoo T, Joyce NC. Cell cycle kinetics in corneal endothelium from old and young donors. Invest Ophthalmol Vis Sci. 2000;41(3):660–7.Google Scholar
  25. 25.
    Joyce NC. Cell cycle status in human corneal endothelium. Exp Eye Res. 2005;81(6):629–38.PubMedCrossRefGoogle Scholar
  26. 26.
    Miyata K, Drake J, Osakabe Y, Hosokawa Y, Hwang D, Soya K, et al. Effect of donor age on morphologic variation of cultured human corneal endothelial cells. Cornea. 2001;20(1):59–63.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Enomoto K, Mimura T, Harris DL, Joyce NC. Age differences in cyclin-dependent kinase inhibitor expression and rb hyperphosphorylation in human corneal endothelial cells. Invest Ophthalmol Vis Sci. 2006;47(10):4330–40.PubMedCrossRefGoogle Scholar
  28. 28.
    Bednarz J, Rodokanaki-von Schrenck A, Engelmann K. Different characteristics of endothelial cells from central and peripheral human cornea in primary culture and after subculture. In Vitro Cell Dev Biol Anim. 1998;34(2):149–53.CrossRefGoogle Scholar
  29. 29.
    Mimura T, Joyce NC. Replication competence and senescence in central and peripheral human corneal endothelium. Invest Ophthalmol Vis Sci. 2006;47(4):1387–96.PubMedCrossRefGoogle Scholar
  30. 30.
    Raviola G. Schwalbe line’s cells: a new cell type in the trabecular meshwork of Macaca mulatta. Invest Ophthalmol Vis Sci. 1982;22(1):45–56.Google Scholar
  31. 31.
    He Z, Campolmi N, Gain P, Ha Thi BM, Dumollard J-M, Duband S, et al. Revisited microanatomy of the corneal endothelial periphery: new evidence for continuous centripetal migration of endothelial cells in humans. Stem Cells. 2012;30(11):2523–34.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Whikehart DR, Parikh CH, Vaughn AV, Mishler K, Edelhauser HF. Evidence suggesting the existence of stem cells for the human corneal endothelium. Mol Vis. 2005;11:816–24.PubMedPubMedCentralGoogle Scholar
  33. 33.
    McGowan SL, Edelhauser HF, Pfister RR, Whikehart DR. Stem cell markers in the human posterior limbus and corneal endothelium of unwounded and wounded corneas. Mol Vis. 2007;13:1984–2000.Google Scholar
  34. 34.
    Choi SO, Jeon HS, Hyon JY, Oh Y-J, Wee WR, Chung T, et al. Recovery of corneal endothelial cells from periphery after injury. PLoS One. 2015;10(9):e0138076.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Yokoo S, Yamagami S, Yanagi Y, Uchida S, Mimura T, Usui T, et al. Human corneal endothelial cell precursors isolated by sphere-forming assay. Invest Opthalmol Vis Sci. 2005;46(5):1626.CrossRefGoogle Scholar
  36. 36.
    Mimura T, Yamagami S, Yokoo S, Usui T, Amano S. Selective isolation of young cells from human corneal endothelium by the sphere-forming assay. Tissue Eng Part C Methods. 2010;16(4):803–12.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Yamagami S, Yokoo S, Mimura T, Takato T, Araie M, Amano S. Distribution of precursors in human corneal stromal cells and endothelial cells. Ophthalmology. 2007;114(3):433–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Bednarz J, Teifel M, Friedl P, Engelmann K. Immortalization of human corneal endothelial cells using electroporation protocol optimized for human corneal endothelial and human retinal pigment epithelial cells. Acta Ophthalmol Scand. 2000;78(2):130–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Valtink M, Gruschwitz R, Funk RHW, Engelmann K. Two clonal cell lines of immortalized human corneal endothelial cells show either differentiated or precursor cell characteristics. Cells Tissues Organs. 2008;187(4):286–94.PubMedCrossRefGoogle Scholar
  40. 40.
    HCEC-B4G12 | Creative bioarray [Internet]. [cited 2018 Mar 13]. Available from: https://www.creative-bioarray.com/HCEC-B4G12-CSC-C3457-item-1468.htm.
  41. 41.
    Kim H-J, Ryu Y-H, Ahn J-I, Park J-K, Kim J-C. Characterization of immortalized human corneal endothelial cell line using HPV 16 E6/E7 on lyophilized human amniotic membrane. Korean J Ophthalmol. 2006;20(1):47–54.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Schmedt T, Chen Y, Nguyen TT, Li S, Bonanno JA, Jurkunas UV. Telomerase immortalization of human corneal endothelial cells yields functional hexagonal monolayers. Lewin A, editor. PLoS One. 2012;7(12):e51427.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Yokoi T, Seko Y, Yokoi T, Makino H, Hatou S, Yamada M, et al. Establishment of functioning human corneal endothelial cell line with high growth potential. Kerkis I, editor. PLoS One. 2012;7(1):e29677.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Fan T, Zhao J, Ma X, Xu X, Zhao W, Xu B. Establishment of a continuous untransfected human corneal endothelial cell line and its biocompatibility to denuded amniotic membrane. Mol Vis. 2011;17:469–80.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Peh GSL, Beuerman RW, Colman A, Tan DT, Mehta JS. Human corneal endothelial cell expansion for corneal endothelium transplantation: an overview. Transplantation. 2011;91(8):811–9.CrossRefGoogle Scholar
  46. 46.
    Engelmann K, Böhnke M, Friedl P. Isolation and long-term cultivation of human corneal endothelial cells. Invest Ophthalmol Vis Sci. 1988;29(11):1656–62.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Peh GSL, Lee M-X, Wu F-Y, Toh K-P, Balehosur D, Mehta JS. Optimization of human corneal endothelial cells for culture: the removal of corneal stromal fibroblast contamination using magnetic cell separation. Int J Biomater. 2012;2012:601302.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Parekh M, Baruzzo M, Favaro E, Borroni D, Ferrari S, Ponzin D, et al. Standardizing descemet membrane endothelial keratoplasty graft preparation method in the eye Bank — experience of 527 Descemet membrane endothelial keratoplasty tissues. Cornea. 2017;36(12):1458–1466.PubMedCrossRefGoogle Scholar
  49. 49.
    Engelmann K, Bednarz J, Valtink M. Prospects for endothelial transplantation. Exp Eye Res. 2004;78(3):573–8.CrossRefGoogle Scholar
  50. 50.
    Senoo T, Obara Y, Joyce NC. EDTA: a promoter of proliferation in human corneal endothelium. Invest Ophthalmol Vis Sci. 2000;41(10):2930–5.Google Scholar
  51. 51.
    Li W, Sabater AL, Chen Y-T, Hayashida Y, Chen S-Y, He H, et al. A novel method of isolation, preservation, and expansion of human corneal endothelial cells. Invest Opthalmol Vis Sci. 2007;48(2):614.CrossRefGoogle Scholar
  52. 52.
    Peh GSL, Toh K-P, Wu F-Y, Tan DT, Mehta JS. Cultivation of human corneal endothelial cells isolated from paired donor corneas. Mohan RR, editor. PLoS One. 2011;6(12):e28310.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Gregory CD, Pound JD. Microenvironmental influences of apoptosis in vivo and in vitro. Apoptosis. 2010;15(9):1029–49.PubMedCrossRefGoogle Scholar
  54. 54.
    Spinozzi D, Miron A, Bruinsma M, Lie JT, Dapena I, Oellerich S, et al. Improving the success rate of human corneal endothelial cell cultures from single donor corneas with stabilization medium. Cell Tissue Bank. 2017;19(1):9.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Navaratnam J, Utheim T, Rajasekhar V, Shahdadfar A. Substrates for expansion of corneal endothelial cells towards bioengineering of human corneal endothelium. J Funct Biomater. 2015;6(3):917–45.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Chen KH, Azar D, Joyce NC. Transplantation of adult human corneal endothelium ex vivo: a morphologic study. Cornea. 2001;20(7):731–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Choi JS, Kim EY, Kim MJ, Giegengack M, Khan FA, Khang G, et al. In vitro evaluation of the interactions between human corneal endothelial cells and extracellular matrix proteins. Biomed Mater. 2013;8(1):14108.CrossRefGoogle Scholar
  58. 58.
    Engler C, Kelliher C, Speck CL, Jun AS. Assessment of attachment factors for primary cultured human corneal endothelial cells. Cornea. 2009;28(9):1050–4.PubMedCrossRefGoogle Scholar
  59. 59.
    Choi JS, Williams JK, Greven M, Walter KA, Laber PW, Khang G, et al. Bioengineering endothelialized neo-corneas using donor-derived corneal endothelial cells and decellularized corneal stroma. Biomaterials. 2010;31(26):6738–45.PubMedCrossRefGoogle Scholar
  60. 60.
    Yamaguchi M, Ebihara N, Shima N, Kimoto M, Funaki T, Yokoo S, et al. Adhesion, migration, and proliferation of cultured human corneal endothelial cells by laminin-5. Invest Ophthalmol Vis Sci. 2011;52(2):679–84.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Mimura T, Yamagami S, Yokoo S, Usui T, Tanaka K, Hattori S, et al. Cultured human corneal endothelial cell transplantation with a collagen sheet in a rabbit model. Invest Ophthalmol Vis Sci. 2004;45(9):2992–7.CrossRefGoogle Scholar
  62. 62.
    Hitani K, Yokoo S, Honda N, Usui T, Yamagami S, Amano S. Transplantation of a sheet of human corneal endothelial cell in a rabbit model. Mol Vis. 2008;14:1–9.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Numata R, Okumura N, Nakahara M, Ueno M, Kinoshita S, Kanematsu D, et al. Cultivation of corneal endothelial cells on a pericellular matrix prepared from human decidua-derived mesenchymal cells. Connon CJ, editor. PLoS One. 2014;9(2):e88169.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Proulx S, Audet C, d’arc UJ, Deschambeault A, Carrier P, Giasson CJ, et al. Tissue engineering of feline corneal endothelium using a devitalized human cornea as carrier. Tissue Eng Part A. 2009;15(7):1709–18.PubMedCrossRefGoogle Scholar
  65. 65.
    Honda N. Descemet stripping automated endothelial keratoplasty using cultured corneal endothelial cells in a rabbit model. Arch Ophthalmol. 2009;127(10):1321.PubMedCrossRefGoogle Scholar
  66. 66.
    Bayyoud T, Thaler S, Hofmann J, Maurus C, Spitzer MS, Bartz-Schmidt K-U, et al. Decellularized bovine corneal posterior lamellae as carrier matrix for cultivated human corneal endothelial cells. Curr Eye Res. 2012;37(3):179–86.PubMedCrossRefGoogle Scholar
  67. 67.
    Ishino Y, Sano Y, Nakamura T, Connon CJ, Rigby H, Fullwood NJ, et al. Amniotic membrane as a carrier for cultivated human corneal endothelial cell transplantation. Invest Ophthalmol Vis Sci. 2004;45(3):800–6.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Wencan W, Mao Y, Wentao Y, Fan L, Jia Q, Qinmei W, et al. Using basement membrane of human amniotic membrane as a cell carrier for cultivated cat corneal endothelial cell transplantation. Curr Eye Res. 2007;32(3):199–215.PubMedCrossRefGoogle Scholar
  69. 69.
    Niknejad H, Deihim T, Solati-Hashjin M, Peirovi H. The effects of preservation procedures on amniotic membrane’s ability to serve as a substrate for cultivation of endothelial cells. Cryobiology. 2011;63(3):145–51.PubMedCrossRefGoogle Scholar
  70. 70.
    Yoeruek E, Saygili O, Spitzer MS, Tatar O, Bartz-Schmidt KU, Szurman P. Human anterior lens capsule as carrier matrix for cultivated human corneal endothelial cells. Cornea. 2009;28(4):416–20.CrossRefGoogle Scholar
  71. 71.
    Kopsachilis N, Tsinopoulos I, Tourtas T, Kruse FE, Luessen UW. Descemet’s membrane substrate from human donor lens anterior capsule. Clin Exp Ophthalmol. 2012;40(2):187–94.PubMedCrossRefGoogle Scholar
  72. 72.
    Van den Bogerd B, Dhubhghaill SN, Zakaria N. Characterizing Human Decellularized Crystalline Lens Capsules as a Scaffold for Corneal Endothelial Tissue Engineering. J Tissue Eng Regen Med. 2018:1–9.Google Scholar
  73. 73.
    Hsiue G-H, Lai J-Y, Chen K-H, Hsu W-M. A novel strategy for corneal endothelial reconstruction with a bioengineered cell sheet. Transplantation. J Tissue Eng Regen Med. 2018;12(4):e2020–8.Google Scholar
  74. 74.
    Lai J-Y, Chen K-H, Hsiue G-H. Tissue-engineered human corneal endothelial cell sheet transplantation in a rabbit model using functional biomaterials. Transplantation. 2007;84(10):1222–32.Google Scholar
  75. 75.
    Yoeruek E, Bayyoud T, Maurus C, Hofmann J, Spitzer MS, Bartz-Schmidt K-U, et al. Decellularization of porcine corneas and repopulation with human corneal cells for tissue-engineered xenografts. Acta Ophthalmol. 2012;90(2):e125–31.PubMedCrossRefGoogle Scholar
  76. 76.
    Joyce NC, Zhu CC. Human corneal endothelial cell proliferation: potential for use in regenerative medicine. Cornea. 2004;23(8 Suppl):S8–19.PubMedCrossRefGoogle Scholar
  77. 77.
    Okumura N, Inoue R, Kakutani K, Nakahara M. Corneal endothelial cells have an absolute requirement for cysteine for survival. Cornea. 2017;36(8):988–94.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Peh GSL, Chng Z, Ang H-P, Cheng TYD, Adnan K, Seah X-Y, et al. Propagation of human corneal endothelial cells: a novel dual media approach. Cell Transplant. 2015;24(2):287–304.CrossRefGoogle Scholar
  79. 79.
    Liu X, Tseng SC, Zhang M-C, Chen S-Y, Tighe S, Lu W-J, et al. LIF-JAK1-STAT3 signaling delays contact inhibition of human corneal endothelial cells. Cell Cycle. 2015;14(8):1197–206.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Engelmann K, Friedl P. Growth of human corneal endothelial cells in a serum-reduced medium. Cornea. 1995;14(1):62–70.CrossRefGoogle Scholar
  81. 81.
    Blake DA, Yu H, Young DL, Caldwell DR. Matrix stimulates the proliferation of human corneal endothelial cells in culture. Invest Ophthalmol Vis Sci. 1997;38(6):1119–29.PubMedGoogle Scholar
  82. 82.
    Jäckel T, Knels L, Valtink M, Funk RHW, Engelmann K. Serum-free corneal organ culture medium (SFM) but not conventional minimal essential organ culture medium (MEM) protects human corneal endothelial cells from apoptotic and necrotic cell death. Br J Ophthalmol. 2011;95(1):123–30.PubMedCrossRefGoogle Scholar
  83. 83.
    Feizi S, Soheili Z-S, Bagheri A, Balagholi S, Mohammadian A, Rezaei-Kanavi M, et al. Effect of amniotic fluid on the in vitro culture of human corneal endothelial cells. Exp Eye Res. 2014;122:132–40.PubMedCrossRefGoogle Scholar
  84. 84.
    Zhu Y-T, Li F, Han B, Tighe S, Zhang S, Chen S-Y, et al. Activation of RhoA-ROCK-BMP signaling reprograms adult human corneal endothelial cells. J Cell Biol. 2014;206(6):799–811.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Thieme D, Reuland L, Lindl T, Kruse F, Fuchsluger T. Optimized human platelet lysate as novel basis for a serum-, xeno-, and additive-free corneal endothelial cell and tissue culture. J Tissue Eng Regen Med. 2018;12(2):557–64.PubMedCrossRefGoogle Scholar
  86. 86.
    Lee JG, Kay EP. FGF-2-mediated signal transduction during endothelial mesenchymal transformation in corneal endothelial cells. Exp Eye Res. 2006;83(6):1309–16.CrossRefGoogle Scholar
  87. 87.
    Zhu Y-T, Chen H-C, Chen S-Y, Tseng SCG. Nuclear p120 catenin unlocks mitotic block of contact-inhibited human corneal endothelial monolayers without disrupting adherent junctions. J Cell Sci. 2012;125(Pt 15):3636–48.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Zhu Y-T, Tighe S, Chen S-L, John T, Kao WY, Tseng SCG. Engineering of human corneal endothelial grafts. Curr Ophthalmol Rep. 2015;3(3):207–17.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Lee JG, Ko MK, Kay EP. Endothelial mesenchymal transformation mediated by IL-1β-induced FGF-2 in corneal endothelial cells. Exp Eye Res. 2012;95(1):35–9.CrossRefGoogle Scholar
  90. 90.
    Liu Y, Sun H, Hu M, Zhu M, Tighe S, Chen S, et al. Human corneal endothelial cells expanded in vitro are a powerful resource for tissue engineering. Int J Med Sci. 2017;14(2):128–35.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Bartakova A, Alvarez-Delfin K, Weisman AD, Salero E, Raffa GA, Merkhofer RM, et al. Novel identity and functional markers for human corneal endothelial cells. Invest Opthalmol Vis Sci. 2016;57(6):2749.CrossRefGoogle Scholar
  92. 92.
    Frausto RF, Le DJ, Aldave AJ. Transcriptomic analysis of cultured corneal endothelial cells as a validation for their use in cell replacement therapy. Cell Transplant. 2016;25(6):1159–76.PubMedCrossRefGoogle Scholar
  93. 93.
    Ding V, Chin A, Peh G, Mehta JS, Choo A. Generation of novel monoclonal antibodies for the enrichment and characterization of human corneal endothelial cells (hCENC) necessary for the treatment of corneal endothelial blindness. MAbs. 2014;6(6):1439–52.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Dorfmueller S, Tan HC, Ngoh ZX, Toh KY, Peh G, Ang H-P, et al. Isolation of a recombinant antibody specific for a surface marker of the corneal endothelium by phage display. Sci Rep. 2016;6(1):21661.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Koizumi N, Kinoshita S, Okumura N. The role of rho kinase inhibitors in corneal endothelial dysfunction. Curr Pharm Des. 2017;23(4):660–6.PubMedCrossRefGoogle Scholar
  96. 96.
    Wang TJ, Chen MS, Chou ML, Lin HC, Seghatchian J, Burnouf T. Comparison of three human platelet lysates used as supplements for in vitro expansion of corneal endothelium cells. Transfus Apher Sci. 2017;56(5):769–73.PubMedCrossRefGoogle Scholar
  97. 97.
    Peh GSL, Ang H-P, Lwin CN, Adnan K, George BL, Seah X-Y, et al. Regulatory compliant tissue-engineered human corneal endothelial grafts restore corneal function of rabbits with bullous keratopathy. Sci Rep. 2017;7(1):14149.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • David Mingo-Botín
    • 1
  • Marie Joan Therese D. Balgos
    • 2
  • Francisco Arnalich-Montiel
    • 3
  1. 1.Cornea Unit, Department of OphthalmologyHospital Universitario Ramón y CajalMadridSpain
  2. 2.Research and Development Department, Cornea, Cataract and Refractive Surgery Department, Vissum AlicanteAlicanteSpain
  3. 3.Vissum CorporationMadridSpain

Personalised recommendations