Skip to main content

Corneal Endothelium: Applied Anatomy

  • Chapter
  • First Online:
Corneal Regeneration

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

Abstract

Corneal endothelium is derived from the neural crest, and it is the innermost layer of the cornea. It consists on a monolayer of flat cells on an amorphous collagenous membrane, Descemet’s membrane. It functions as a permeability barrier and as an active pump to generate an osmotic gradient to keep the relative stromal deturgescence (78% water content) required for corneal transparency and also participates in the synthesis of Descemet’s membrane. At birth there are over 3000 cells/mm2 that tend to decline with aging at approximately 0.6% pace reduction during the adult period. Nevertheless, a minimal numerical density of 400–500 cells/mm2 is required to sustain the pumping activity of the endothelium. Zonula occludens-1 (ZO-1), aquaporin 1, Na+/K+ pump, and neuron-specific enolase are classic markers of endothelial cells. Expression of these proteins is not unique of corneal endothelium, but the pattern subcellular distribution using these and other proteins such as N-cadherin, NCAM, integrin α3ß1, or the actin/myosin network can be used to distinguish these cells from the other corneal cell types. Specific identification of these cells is highly important to select culture subpopulation for cell therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tuft SJ, Coster DJ. The corneal endothelium. Eye (Lond). 1990;4(Pt 3):389–424.

    Article  Google Scholar 

  2. Meier S. Initiation of corneal differentiation prior to cornea-lens association. Cell Tissue Res. 1977;184(2):255–67.

    Article  CAS  Google Scholar 

  3. Zavala J, López Jaime GR, Rodríguez Barrientos CA, Valdez-Garcia J. Corneal endothelium: developmental strategies for regeneration. Eye (Lond). 2013;27(5):579–88.

    Article  CAS  Google Scholar 

  4. Beebe DC, Coats JM. The lens organizes the anterior segment: specification of neural crest cell differentiation in the avian eye. Dev Biol. 2000;220(2):424–31.

    Article  CAS  Google Scholar 

  5. Gage PJ, Rhoades W, Prucka SK, Hjalt T. Fate maps of neural crest and mesoderm in the mammalian eye. Invest Ophthalmol Vis Sci. 2005;46(11):4200–8.

    Article  Google Scholar 

  6. Joyce NC. Proliferative capacity of the corneal endothelium. Prog Retin Eye Res. 2003;22(3):359–89.

    Article  CAS  Google Scholar 

  7. DelMonte DW, Kim T. Anatomy and physiology of the cornea. J Cataract Refract Surg. 2011;37(3):588–98.

    Article  Google Scholar 

  8. Murphy C, Alvarado J, Juster R. Prenatal and postnatal growth of the human Descemet’s membrane. Invest Ophthalmol Vis Sci. 1984;25(12):1402–15.

    CAS  PubMed  Google Scholar 

  9. Stiemke MM, Edelhauser HF, Geroski DH. The developing corneal endothelium: correlation of morphology, hydration and Na/K ATPase pump site density. Curr Eye Res. 1991;10(2):145–56.

    Article  CAS  Google Scholar 

  10. Sobottka Ventura AC, Wälti R, Böhnke M. Corneal thickness and endothelial density before and after cataract surgery. Br J Ophthalmol. 2001;85(1):18–20.

    Article  Google Scholar 

  11. Yee RW, Matsuda M, Schultz RO, Edelhauser HF. Changes in the normal corneal endothelial cellular pattern as a function of age. Curr Eye Res. 1985;4(6):671–8.

    Article  CAS  Google Scholar 

  12. Rao SK, Ranjan Sen P, Fogla R, Gangadharan S, Padmanabhan P, Badrinath SS. Corneal endothelial cell density and morphology in normal Indian eyes. Cornea. 2000;19(6):820–3.

    Article  CAS  Google Scholar 

  13. Geroski DH, Matsuda M, Yee RW, Edelhauser HF. Pump function of the human corneal endothelium. Effects of age and cornea guttata. Ophthalmology. 1985;92(6):759–63.

    Article  CAS  Google Scholar 

  14. Bonanno JA. Identity and regulation of ion transport mechanisms in the corneal endothelium. Prog Retin Eye Res. 2003;22(1):69–94.

    Article  CAS  Google Scholar 

  15. Puk O, Dalke C, Calzada-Wack J, Ahmad N, Klaften M, Wagner S, et al. Reduced corneal thickness and enlarged anterior chamber in a novel ColVIIIa2G257D mutant mouse. Invest Ophthalmol Vis Sci. 2009;50(12):5653–61.

    Article  Google Scholar 

  16. He Z, Forest F, Gain P, Rageade D, Bernard A, Acquart S, et al. 3D map of the human corneal endothelial cell. Sci Rep. 2016;6(1):29047.

    Article  CAS  Google Scholar 

  17. Okumura N, Hirano H, Numata R, Nakahara M, Ueno M, Hamuro J, et al. Cell surface markers of functional phenotypic corneal endothelial cells. Invest Opthalmol Vis Sci. 2014;55(11):7610.

    Article  CAS  Google Scholar 

  18. Cheong YK, Ngoh ZX, Peh GSL, Ang H-P, Seah X-Y, Chng Z, et al. Identification of cell surface markers glypican-4 and CD200 that differentiate human corneal endothelium from stromal fibroblasts. Invest Opthalmol Vis Sci. 2013;54(7):4538–47.

    Article  CAS  Google Scholar 

  19. Ding V, Chin A, Peh G, Mehta JS, Choo A. Generation of novel monoclonal antibodies for the enrichment and characterization of human corneal endothelial cells (hCENC) necessary for the treatment of corneal endothelial blindness. MAbs. 2014;6(6):1439–52.

    Article  Google Scholar 

  20. Bartakova A, Alvarez-Delfin K, Weisman AD, Salero E, Raffa GA, Merkhofer RM, et al. Novel identity and functional markers for human corneal endothelial cells. Invest Ophthalmol Vis Sci. 2016;57(6):2749–62.

    Article  CAS  Google Scholar 

  21. Yoshihara M, Ohmiya H, Hara S, Kawasaki S, Hayashizaki Y, Itoh M, et al. Discovery of molecular markers to discriminate corneal endothelial cells in the human body. PLoS One. 2015;10(3):e0117581. Kerkis I, editor.

    Article  Google Scholar 

Download references

Compliance with Ethical Requirements

Francisco Arnalich-Montiel declares no conflict of interest. No human or animal studies were carried out by the author for this article.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arnalich-Montiel, F. (2019). Corneal Endothelium: Applied Anatomy. In: Alió, J., Alió del Barrio, J., Arnalich-Montiel, F. (eds) Corneal Regeneration . Essentials in Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-030-01304-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01304-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01303-5

  • Online ISBN: 978-3-030-01304-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics