Advertisement

Applied Anatomy of the Corneal Stroma

  • Harminder Singh DuaEmail author
  • Dalia G. Said
Chapter
Part of the Essentials in Ophthalmology book series (ESSENTIALS)

Abstract

The corneal stroma is made of Bowman’s layer (BL) anteriorly; the stromal lamellae, which form the bulk of its thickness, centrally; and the pre-Descemet’s layer (Dua’s layer) (PDL) which lines the posterior stroma, lying just anterior to Descemet’s membrane. The BL and PDL are believed to be derived from the embryonic primary stroma, and the central lamellae are derived from collagen laid down by the third wave of migration of neural crest cells. The BL is an acellular, homogenous layer of uniform thickness, made primarily of type I and type III collagen. It is present in human corneas but not in all mammals. Its exact function is unknown. When destroyed, like after laser corneal surgery, it does not regenerate. The bulk of the stroma is made of orthogonally arranged lamellae of predominantly type I collagen. These lamellae run at right angles but are more compact with some obliquely oriented fibres, anteriorly. At the periphery near the limbus, they run a tangential or circular course. The lamellae are more ‘intertwined’ at the periphery than in the centre of the cornea. The predominant cell of the stroma is the keratocyte. Keratocytes lie in between lamellae and have long processes that extend from the cell bodies and make connection with corresponding processes from neighbouring cells. They lay down collagen and, following injury, can transform to fibroblasts and myofibroblasts. Posteriorly there is a distinct cleavage plane between the stroma and the PDL, which is exploited in lamellar surgery and also becomes manifest in posterior cornea pathology. The PDL is largely acellular, is made of 5–8 compactly arranged thin lamellae of type III and type VI collagen and a high concentration of elastin. It is impervious to air and at the periphery has single or clusters of microscopic fenestrations all along the circumference. The collagen lamellae disassociate and open out along the periphery to continue as the collagen/elastin core of the trabecular meshwork.

Keywords

Bowman’s layer Keratocytes Pre-Descemet’s layer Dua’s layer Corneal biometrics 

Notes

Declaration of Interest

None of the authors have any conflict of interest related to the subject matter and content of the chapter. HS Dua is Consultant for Dompe, Santen, Thea and Shire. He has shares in NuVision BioTherapeutics and GlaxoSmithKline. No human or animal studies were carried out by the authors for this chapter.

References

  1. 1.
    Nishida T. Basic sciences: cornea, sclera, and ocular adnexa anatomy, biochemistry, physiology, and biomechanics. Cornea. In: Krachmer JH, Mannis MJ, Holland EJ, editors. Cornea, fundamentals of cornea and external disease. New York: Mosby; 1997.Google Scholar
  2. 2.
    Fares U, Otri AM, Al-Aqaba MA, Dua HS. Correlation of central and peripheral corneal thickness in healthy corneas. Cont Lens Anterior Eye. 2011;35:39–45.CrossRefGoogle Scholar
  3. 3.
    Yokogawa H, Kobayashi A, Sugiyama K. Mapping of normal corneal K-structures by in vivo laser confocal microscopy. Cornea. 2008;27:879–83.CrossRefGoogle Scholar
  4. 4.
    Kobayashi A, Yokogawa H, Sugiyama K. In vivo laser confocal microscopy of Bowman’s layer of the cornea. Ophthalmology. 2006;113:2203–8.CrossRefGoogle Scholar
  5. 5.
    Gipson IK. Anatomy of the conjunctiva, cornea and limbus. In: Smolin G, Thoft RA, editors. The cornea, scientific foundations and clinical practice. New York: Little Brown and company; 1994.Google Scholar
  6. 6.
    van Dijk K, Parker JS, Baydoun L, Ilyas A, Dapena I, Groeneveld-van Beek EA, Melles GRJ. Bowman layer transplantation: 5-year results. Graefes Arch Clin Exp Ophthalmol. 2018.  https://doi.org/10.1007/s00417-018-3927-7. CrossRefGoogle Scholar
  7. 7.
    McLaughlin JS, Linsenmayer TF, Birk DE. Type V collagen synthesis and deposition by chicken embryo corneal fibroblasts in vitro. J Cell Sci. 1989;94:371–9.PubMedGoogle Scholar
  8. 8.
    Komai Y, Ushiki T. The three-dimensional organisation of collagen fibrils in the human cornea and sclera. Invest Ophthalmol Vis Sci. 1991;32:2244–58.PubMedGoogle Scholar
  9. 9.
    Rodrigues MM. Cornea. In: Jakobiec FA, editor. Ocular anatomy, embryology and teratology. Philadelphia: Harper & Row; 1982.Google Scholar
  10. 10.
    Muller LJ, Pels E, Vrensen GF. The specific architecture of the anterior stroma accounts for maintenance of corneal curvature. Br J Ophthalmol. 2001;85:437–43.CrossRefGoogle Scholar
  11. 11.
    Abahussin M, Hayes S, Knox Cartwright NE, Kamma-Lorger CS, Khan Y, Marshall J, Meek KM. 3D collagen orientation study of the human cornea using X-ray diffraction and femtosecond laser technology. Invest Ophthalmol Vis Sci. 2009;50:5159–64.CrossRefGoogle Scholar
  12. 12.
    Meek KM, Knupp C. Corneal structure and transparency. Prog Retinal Eye Res. 2015;49:1–16.CrossRefGoogle Scholar
  13. 13.
    Boote C, Dennis S, Huang Y, Quantock AJ, Meek KM. Lamellar orientation in human cornea in relation to mechanical properties. J Struct Biol. 2005;149:1–6.CrossRefGoogle Scholar
  14. 14.
    Hogan MJ, Alvarado JA, Wedell JE. In: Hogan MJ, Alvarado JA, Wedell JE, editors. Histology of the human eye. Philadelphia: Saunders; 1971.Google Scholar
  15. 15.
    Radner W, Zehetmayer M, Aufreiter R, Mallinger R. Interlacing and cross-angle distribution of collagen lamellae in the human cornea. Cornea. 1998;17:537–43.CrossRefGoogle Scholar
  16. 16.
    Winkler M, Chai D, Kriling S, Nien CJ, Brown DJ, Jester B, Juhasz T, Jester JV. Nonlinear optical macroscopic assessment of 3-D corneal collagen organization and axial biomechanics. Invest Ophthalmol Vis Sci. 2011;52:8818–27.CrossRefGoogle Scholar
  17. 17.
    Smolen MK, McCarey BE. Interlamellar adhesive strength in human eye bank corneas. Invest Ophthalmol Vis Sci. 1990;31:1087–95.Google Scholar
  18. 18.
    Dua HS, Faraj LA, Kenawy MB, AlTaan S, Elalfy MS, Katamish T, Said DG. Dynamics of big bubble formation in deep anterior lamellar keratoplasty by the big bubble technique: in vitro studies. Acta Ophthalmol. 2018;96:69–76.CrossRefGoogle Scholar
  19. 19.
    Kokott W. Ubermechanisch-funktionelle strikturen des auges. Albrecht Von Graefes Arch Ophthalmol. 1938;138:424–85.CrossRefGoogle Scholar
  20. 20.
    Newton RH, Meek KM. Circumcorneal annulus of collagen fibrils in the human limbus. Invest Ophthalmol Vis Sci. 1998;39:1125–34.PubMedGoogle Scholar
  21. 21.
    Aghamohammadzadeh H, Newton RH, Meek KM. X-ray scattering used to map the preferred collagen orientation in the human cornea and limbus. Structure. 2004;12:249–56.CrossRefGoogle Scholar
  22. 22.
    M'Ilroy JH. On the presence of elastic fibres in the cornea. J Anat Physiol. 1906;40:282–91.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Asejczyk-Widlicka M, Srodka DW, Kasprzak H, Pierscionek BK. Modelling the elastic properties of the anterior eye and their contribution to maintenance of image quality: the role of the limbus. Eye. 2007;21:1087–94.CrossRefGoogle Scholar
  24. 24.
    Lewis PN, White TL, Young RD, Bell JS, Winlove CP, Meek KM. Three-dimensional arrangement of elastic fibers in the human corneal stroma. Exp Eye Res. 2016;146:43–53.CrossRefGoogle Scholar
  25. 25.
    White TL, Lewis PN, Young RD, Kitazawa K, Inatomi T, Kinoshita S, Meek KM. Elastic microfibril distribution in the cornea: differences between normal and keratoconic stroma. Exp Eye Res. 2017;159:40–8.CrossRefGoogle Scholar
  26. 26.
    Bettelheim FA, Plessy B. The hydration of proteoglycans of bovine cornea. Biochem Biophys Acta. 1975;383:203–14.CrossRefGoogle Scholar
  27. 27.
    Castoro JA, Bettelheim FA. Water gradients across bovine cornea. Invest Ophthalmol Vis Sci. 1988;29:963–8.PubMedGoogle Scholar
  28. 28.
    Hassell JR, Birk DE. The molecular basis of corneal transparency. Exp Eye Res. 2010;91:326–35.CrossRefGoogle Scholar
  29. 29.
    Otori T. Electrolyte content of the rabbit corneal stroma. Exp Eye Res. 1967;6:356–67.CrossRefGoogle Scholar
  30. 30.
    Joseph A, Hossain P, Jham S, Jones RE, Tighe P, McIntosh RS, Dua HS. Expression of CD34 and L-selectin on human corneal keratocytes. Invest Ophthalmol Vis Sci. 2003;44:4689–92.CrossRefGoogle Scholar
  31. 31.
    Perrella G, Brusini P, Spelat R, Hossain P, Hopkinson A, Dua HS. Expression of haematopoietic stem cell markers, CD133 and CD34 on human corneal keratocytes. Br J Ophthalmol. 2007;91:94–9.CrossRefGoogle Scholar
  32. 32.
    Patel S, McLaren J, Hodge D, Bourne W. Normal human keratocyte density and corneal thickness measurement by using confocal microscopy in vivo. Invest Ophthalmol Vis Sci. 2001;42:333–9.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Niederer RL, Perumal D, Sherwin T, McGhee CNJ. Age-related differences in the normal human cornea: a laser scanning in vivo confocal microscopy study. Br J Ophthalmol. 2007;91:1165–9.CrossRefGoogle Scholar
  34. 34.
    Branch MJ, Hashmani K, Dhillon P, Jones DR, Dua HS, Hopkinson A. Mesenchymal stem cells in the human corneal limbal stroma. Invest Ophthalmol Vis Sci. 2012;53:5109–16.CrossRefGoogle Scholar
  35. 35.
    Hashmani K, Branch MJ, Sidney LE, Dhillon PS, Verma M, McIntosh OD, Hopkinson A, Dua HS. Characterization of corneal stromal stem cells with the potential for epithelial transdifferentiation. Stem Cell Res Ther. 2013;4:75.CrossRefGoogle Scholar
  36. 36.
    Giraud JP, Pouliquen Y, Offret G, Payrau P. Statistical morphometric studies in normal human and rabbit corneal stroma. Exp Eye Res. 1975;21:221–9.CrossRefGoogle Scholar
  37. 37.
    Jester JV, Moller-Pedersen T, Huag J, Sax CM, Kays WT, Cavangh HD, Petroll WM, Piatigorsky J. The cellular basis of corneal transparency: evidence for ‘corneal crystallins. J Cell Sci. 1999;112:613–22.PubMedGoogle Scholar
  38. 38.
    Jester JV. Corneal crystallins and the development of cellular transparency. Semin Cell Dev Biol. 2008;19:82–93.CrossRefGoogle Scholar
  39. 39.
    Said DG, Nubile M, Alomar T, Hopkinson A, Gray T, Lowe J, Dua HS. Histologic features of transplanted amniotic membrane: implications for corneal wound healing. Ophthalmology. 2009;116:1287–95.CrossRefGoogle Scholar
  40. 40.
    Wilson SE, He YG, Weng J, Li Q, McDowall AW, Vital M, Chwang EL. Epithelial injury induces keratocyte apoptosis: hypothesized role for the interleukin-1 system in the modulation of corneal tissue organization and wound healing. Exp Eye Res. 1996;62:325–57.CrossRefGoogle Scholar
  41. 41.
    Wilson SE, Pedroza L, Beuerman R, Hill JM. Herpes simplex virus type-1 infection of corneal epithelial cells induces apoptosis of the underlying keratocytes. Exp Eye Res. 1997;64:775–9.CrossRefGoogle Scholar
  42. 42.
    Perrella G, Scott CA, Spelat R, Brusini P, D’Aurizio F, De P, Dua HS. Cultured human keratocytes from the limbus and cornea both express epithelial cytokeratin 3: possible mesenchymal-epithelial transition. Int J Ophthalmic Pathol. 2012;1:2.  https://doi.org/10.4172/2324-8599.1000101.CrossRefGoogle Scholar
  43. 43.
    Bonini S, Rama P, Olzi D, Lambiase A. Neurotrophic keratitis. Eye. 2003;17:989–95.CrossRefGoogle Scholar
  44. 44.
    Marfurt CF, Cox J, Deek S, Dvorscak L. Anatomy of the human corneal innervation. Exp Eye Res. 2010;90:478–92.CrossRefGoogle Scholar
  45. 45.
    Leon-Feliu E, Gomez-Ramos P, Rodriguez-Echandia EL. Endothelial nerve fibres in the cornea of the frog Rana ridibunda. Experientia. 1978;34:1352–3.CrossRefGoogle Scholar
  46. 46.
    Muller LJ, Pels L, Vrensen GF. Ultrastructural organization of human corneal nerves. Invest Ophthalmol Vis Sci. 1996;37:476–88.PubMedGoogle Scholar
  47. 47.
    Muller LJ, Vrensen GF, Pels L, Cardozo BN, Willekens B. Architecture of human corneal nerves. Invest Ophthalmol Vis Sci. 1997;38:985–94.PubMedGoogle Scholar
  48. 48.
    Al-Aqaba MA, Fares U, Suleman H, Lowe J, Dua HS. Architecture and distribution of human corneal nerves. Br J Ophthalmol. 2010;94:784–9.CrossRefGoogle Scholar
  49. 49.
    Seyed-Razavi Y, Chinnery HR, McMenamin PG. A novel association between resident tissue macrophages and nerves in the peripheral stroma of the murine cornea. Invest Ophthalmol Vis Sci. 2014;55:1313–20.CrossRefGoogle Scholar
  50. 50.
    Al-Aqaba MA, Alomar T, Lowe J, Dua HS. Corneal nerve aberrations in bullous keratopathy. Am J Ophthalmol. 2011;151:840–9.CrossRefGoogle Scholar
  51. 51.
    Toivanen M, Tervo T, Partanen M, Vannas A, Hervonen A. Histochemical demonstration of adrenergic nerves in the stroma of human cornea. Invest Ophthalmol Vis Sci. 1987;28:398–400.PubMedGoogle Scholar
  52. 52.
    Dua HS, Faraj LA, Said DG, Gray T, Lowe J. Human corneal anatomy redefined: a novel pre-Descemet’s layer (Dua’s layer). Ophthalmology. 2013;120:1778–85.CrossRefGoogle Scholar
  53. 53.
    Dua HS, Faraj L, Said DG. Dua’s layer: discovery, characteristics, clinical applications, controversy and potential relevance to glaucoma. Expert Rev Ophthalmol. 2015a;10:531–47.CrossRefGoogle Scholar
  54. 54.
    Schlötzer-Schrehardt U, Bachmann BO, Tourtas T, Torricelli AA, Singh A, González S, Mei H, Deng SX, Wilson SE, Kruse FE. Ultrastructure of the posterior corneal stroma. Ophthalmology. 2015;122:693–9.CrossRefGoogle Scholar
  55. 55.
    Mohammed I, Ross AR, Britton JO, Said DG, Dua HS. Elastin content and distribution in endothelial keratoplasty tissue determines direction of scrolling. Am J Ophthalmol. 2018;194:16.CrossRefGoogle Scholar
  56. 56.
    Dua HS, Mastropasqua L, Faraj L, Nubile M, Elalfy MS, Lanzini M, Calienno R, Said DG. Big bubble deep anterior lamellar keratoplasty: the collagen layer in the wall of the big bubble is unique. Acta Ophthalmol. 2015b;93:427–30.CrossRefGoogle Scholar
  57. 57.
    Bizheva K, Haines L, Mason E, MacLellan B, Tan B, Hileeto D, Sorbara L. Vivo imaging and morphometry of the human pre-Descemet’s layer and endothelium with ultrahigh-resolution optical coherence tomography. Invest Ophthalmol Vis Sci. 2016;57:2782–7.CrossRefGoogle Scholar
  58. 58.
    Liu Z, Zhang P, Liu C, Zhang W, Hong J, Wang W. Split of Descemet's membrane and pre-Descemet's layer in fungal keratitis: new definition of corneal anatomy incorporating new knowledge of fungal infection. Histopathology. 2015;66:1046–9.CrossRefGoogle Scholar
  59. 59.
    Dua HS, Said DG. Clinical evidence of the pre-Descemets layer (Dua’s layer) in corneal pathology. Eye. 2016;30:1144–5.CrossRefGoogle Scholar
  60. 60.
    Yahia Chérif H, Gueudry J, Afriat M, Delcampe A, Attal P, Gross H, Muraine M. Efficacy and safety of pre-Descemet’s membrane sutures for the management of acute corneal hydrops in keratoconus. Br J Ophthalmol. 2015;99:773–7.CrossRefGoogle Scholar
  61. 61.
    Zaki AA, Elalfy MS, Said DG, Dua HS. Deep anterior lamellar keratoplasty–triple procedure: a useful clinical application of the pre-Descemet’s layer (Dua’s layer). Eye. 2015;29:323–6.CrossRefGoogle Scholar
  62. 62.
    Agarwal A, Dua HS, Narang P, Kumar DA, Agarwal A, Jacob S, et al. Pre-Descemet’s endothelial keratoplasty (PDEK). Br J Ophthalmol. 2014;98:1181–5.CrossRefGoogle Scholar
  63. 63.
    Dua HS, Faraj LA, Branch MJ, Yeung AM, Elalfy MS, Said DG, Gray T, Lowe J. The collagen matrix of the human trabecular meshwork is an extension of the novel pre-Descemet’s layer (Dua’s layer). Br J Ophthalmol. 2014;98:691–7.CrossRefGoogle Scholar
  64. 64.
    O’Rahilly R. The timing and sequence of events in the development of the human eye and ear during the embryonic period proper. Anat Embryol (Berl). 1983;168:87–99.CrossRefGoogle Scholar
  65. 65.
    Hay ED, Revel JP. Fine structure of the developing avian cornea. Monogr Dev Biol. 1969;1:1–144.PubMedGoogle Scholar
  66. 66.
    Bron A, Tripathi R, Tripathi B. Wolff’s anatomy of the eye and orbit. 8th ed. London: Chapman & Hall; 1998.Google Scholar
  67. 67.
    Dodson JW, Hay ED. Secretion of collagenous stroma by isolated epithelium grown in vitro. Exp Cell Res. 1971;65:215–20.CrossRefGoogle Scholar
  68. 68.
    Cai CX, Fitch JM, Svoboda KK, Birk DE, Linsenmayer TF. Cellular invasion and collagen type IX in the primary corneal stroma in vitro. Dev Dyn. 1994;201:206–15.CrossRefGoogle Scholar
  69. 69.
    Hayashi M, Ninomiya Y, Hayashi K, Linsenmayer TF, Olsen BR, Trelstad RL. Secretion of collagen types I and II by epithelial and endothelial cells in the developing chick cornea demonstrated by in situ hybridization and immunohistochemistry. Development. 1988;103:27–36.PubMedGoogle Scholar
  70. 70.
    Linsenmayer TF, Gibney E, Gordon MK, Marchant JK, Hayashi M, Fitch JM. Extracellular matrices of the developing chick retina and cornea. Localization of mRNAs for collagen types II and IX by in situ hybridization. Invest Ophthalmol Vis Sci. 1990;31:1271–6.PubMedGoogle Scholar
  71. 71.
    Quantock AJ, Young RD. Development of the corneal stroma, and the collagen–proteoglycan associations that help define its structure and function. Dev Dyn. 2008;237:2607–21.CrossRefGoogle Scholar
  72. 72.
    Toole BP, Trelstad RL. Hyaluronate production and removal during corneal development in the chick. Dev Biol. 1971;26:28–35.CrossRefGoogle Scholar
  73. 73.
    Maurice DM. The cornea and sclera. In: Davison H, editor. The eye, vol. 1B, Vegetative physiology and biochemistry. 3rd ed. Orlando: Academic press; 1984.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Academic Section of Ophthalmology, Division of Clinical NeuroscienceUniversity of NottinghamNottinghamUK
  2. 2.Department of OphthalmologyQueens Medical Centre, University Hospitals NHS TrustNottinghamUK
  3. 3.Research Institute of Ophthalmology (RIO)CairoEgypt

Personalised recommendations