Advertisement

Corneal Healing

  • Veronica Vargas
  • Francisco Arnalich-Montiel
  • Jorge L. Alió del Barrio
Chapter
Part of the Essentials in Ophthalmology book series (ESSENTIALS)

Abstract

Corneal wound healing is a complex procedure that involves apoptosis, migration, proliferation, and differentiation of cells. Several growth factors and cytokines are necessary to perform this process. Due to the avascular nature of the cornea, these growth factors proceed from sources such as tears, inflammatory cells, epithelium, or stroma. Depending on the extent and type of injury, the healing response can produce corneal scarring, with loss of corneal transparency leading to visual impairment.

In this chapter, we are going to describe the different cytokines and growth factors involved in the healing procedure, as the different phases during the recovery of each corneal layer.

Keywords

Growth factors Cytokines Keratocytes Fibroblasts Myofibroblasts 

References

  1. 1.
    Dawson D, Ubels JL, Edelhauser HF. Cornea and sclera. In: Levin LA, Alm A, Nilsson SFE, Ver Hoeve J, Wu S, editors. Adler’s physiology of the eye. Edinburgh: Saunders; 2011. p. 71–130.CrossRefGoogle Scholar
  2. 2.
    Agrawal VB, Tsai RJF. Corneal epithelial wound healing. Indian J Ophthalmol. 2003;51:5–1.PubMedGoogle Scholar
  3. 3.
    Nishida T, Saika S, Morishige N. Cornea and sclera: anatomy and physiology. In: Krachmer J, Mannis M, Holland E, editors. Cornea. St. Louis: Mosby; 2011. p. 1–22.Google Scholar
  4. 4.
    Sotozono C, He J, Matsimoto Y, Kita M, Imanishi J, Kinoshita S. Cytokine expression in the alkali-burned cornea. Curr Eye Res. 1997;16:670–6.CrossRefGoogle Scholar
  5. 5.
    Ashby BD, Garrett Q, Willcox MDP. Corneal injuries and wound healing – review of processes and therapies. Austin J Clin Ophthalmol. 2014;1(4):1017.Google Scholar
  6. 6.
    Liu C-Y, Kao WW-Y. Corneal epithelial wound healing. Prog Mol Biol Transl Sci. 2015;5:1–11.Google Scholar
  7. 7.
    Ljubimov AV, Saghizadeh M. Progress in corneal wound healing. Prog Retin Eye Res. 2015;49:17.  https://doi.org/10.1016/j.preteyeres.2015.07.002.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Sugioka K, Mishima H, Kodama A, Itahashi M, Fukuda M, Shimomura Y. Regulatory mechanism of collagen degradation by keratocytes and corneal inflammation: the role of Urokinase-type plasminogen activator. Cornea. 2016;35(Suppl):S59–64.CrossRefGoogle Scholar
  9. 9.
    Klenkler B, Sheardown H, Jones L. Growth factors in the tear film: role in tissue maintenance, wound healing, and ocular pathology. Ocul Surf. 2007;5(3):228–39.CrossRefGoogle Scholar
  10. 10.
    Imanishi J, Kamiyama K, Iguchi I, Kita M, Sotozono C, Kinoshita S. Growth factors: importance in wound healing and maintenance of transparency of the cornea. Prog Retin Eye Res. 2000;19(1):113–29.CrossRefGoogle Scholar
  11. 11.
    Miyagi H, Thomasy SM, Russell P, Murphy CJ. The role of hepatocyte growth factor in corneal wound healing. Exp Eye Res. 2018;166:49–55.CrossRefGoogle Scholar
  12. 12.
    Omoto M, Suri K, Amouzegar A, Li M, Katikireddy KR, Mittal SK, et al. Hepatocyte growth factor suppresses inflammation and promotes epithelium repair in corneal injury. Mol Ther. 2017;25(8):1–8.CrossRefGoogle Scholar
  13. 13.
    Lambiase A, Sacchetti M, Bonini S. Nerve growth factor therapy for corneal disease. Curr Opin Ophthalmol. 2012;23:296–302.CrossRefGoogle Scholar
  14. 14.
    Saghizadeh M, Kramerov AA, Svendsen CN, Ljubimov AV. Concise review: stem cells for corneal wound healing. Stem Cells. 2017;35:2105–14.CrossRefGoogle Scholar
  15. 15.
    Dua HS, Gomes JAP, Singh A. Corneal epithelial wound healing. Br J Ophthalmol. 1994;78:401–8.CrossRefGoogle Scholar
  16. 16.
    Torricelli A, Santhanam A, Wu J, Singh V, Wilson S. The corneal fibrosis response to epithelial-stromal injury. Exp Eye Res. 2016;142:110–8.CrossRefGoogle Scholar
  17. 17.
    Bukowiecki A, Hos D, Cursiefen C, Eming SA. Wound-healing studies in cornea and skin: parallels, differences and opportunities. Int J Mol Sci. 2017;18:1–24.CrossRefGoogle Scholar
  18. 18.
    Wilson SE. Corneal myofibroblast biology and pathobiology: generation, persistence and transparency. Exp Eye Res. 2012;99(1):78–88.  https://doi.org/10.1016/j.exer.2012.03.018.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Marino GK, Santhiago MR, Torricelli AAM, Santhanam A, Wilson SE. Corneal molecular and cellular biology for the refractive surgeon: the critical role of the epithelial basement membrane. J Refract Surg. 2016;32(2):118–25.CrossRefGoogle Scholar
  20. 20.
    Bonini S, Lambiase A, Rama P, Caprioglio G, Aloe L. Topical treatment with nerve growth factor for neurotrophic keratitis. Ophthalmology. 2000;107:1347–52.CrossRefGoogle Scholar
  21. 21.
    Cellini M, Bendo E, Bravetti GO, Campos EC. The use of nerve growth factor in surgical wound healing of the cornea. Ophthalmic Res. 2006;38:177–81.CrossRefGoogle Scholar
  22. 22.
    Lambiase A, Bonini S, Aloe L, et al. Anti-inflammatory and healing properties of nerve growth factor in immune corneal ulcers with stromal melting. Arch Ophthalmol. 2000;118:1446–9.CrossRefGoogle Scholar
  23. 23.
    Nishida T, Chikama T, Morishige N, Yanai R, Yamada N, Saito J. Persistent epithelial defects due to neurotrophic keratopathy treated with a substance P- derived peptide and insulin-like growth factor 1. Jpn J Ophthalmol. 2007;51:442–7.CrossRefGoogle Scholar
  24. 24.
    Yamada N, Matsuda R, Morishige N, Yanai R, Chikama T-i, Nishida T, Ishimitsu T, Kamiya A. Open clinical study of eye-drops containing tetrapeptides derived from substance P and insulin-like growth factor-1 for treatment or persistent corneal epithelial defects associated with neurotrophic keratopathy. Br J Ophthalmol. 2008;92:896–900.CrossRefGoogle Scholar
  25. 25.
    Holland S, Morck D, Schultz C. Treatment of corneal defects with delayed re-epithelization with a medical device/drug delivery system for epidermal growth factor. Clin Exp Ophthalmol. 2012;40:1–6.  https://doi.org/10.1111/j.1442-9071.2012.02795.x.CrossRefGoogle Scholar
  26. 26.
    Alió JL, Arnalich-Montiel F, Rodriguez AE. The role of “eye platelet rich plasma” (E-Prp) for wound healing in ophthalmology. Curr Pharm Biotechnol. 2012;13:1257–65.CrossRefGoogle Scholar
  27. 27.
    Alio JL, Abad M, Artola A, Rodriguez-Prats JL, Pastor S, Ruiz-Colecha J. Use of autologous platelet-rich plasma in the treatment of dormant corneal ulcers. Ophthalmology. 2007;114(7):1286–93.CrossRefGoogle Scholar
  28. 28.
    Waring GO, Bourne WM, Edelhauser HF, Kenyon KR. The corneal endothelium. Normal and pathologic structure and function. Ophthalmology. 1982;89(6):531–90.CrossRefGoogle Scholar
  29. 29.
    Edelhauser HF. The resiliency of the corneal endothelium to refractive and intraocular surgery. Cornea. 2000;19(3):263–73.CrossRefGoogle Scholar
  30. 30.
    Joyce NC. Proliferative capacity of the corneal endothelium. Prog Retin Eye Res. 2003;22(3):359–89.CrossRefGoogle Scholar
  31. 31.
    Watsky MA, McDermott ML, Edelhauser HF. In vitro corneal endothelial permeability in rabbit and human: the effects of age, cataract surgery and diabetes. Exp Eye Res. 1989;49(5):751–67.CrossRefGoogle Scholar
  32. 32.
    Senoo T, Joyce NC. Cell cycle kinetics in corneal endothelium from old and young donors. Invest Ophthalmol Vis Sci. 2000;41(3):660–7.PubMedGoogle Scholar
  33. 33.
    Yoshida K, Kase S, Nakayama K, Nagahama H, Harada T, Ikeda H, et al. Involvement of p27KIP1 in the proliferation of the developing corneal endothelium. Invest Ophthalmol Vis Sci. 2004;45(7):2163–7.CrossRefGoogle Scholar
  34. 34.
    Joyce NC, Zhu CC, Harris DL. Relationship among oxidative stress, DNA damage, and proliferative capacity in human corneal endothelium. Invest Ophthalmol Vis Sci. 2009;50(5):2116–22.CrossRefGoogle Scholar
  35. 35.
    Van den Bogerd B, Dhubhghaill SN, Koppen C, Tassignon M-J, Zakaria N. A review of the evidence for in vivo corneal endothelial regeneration. Surv Ophthalmol. 2018;63:149–65.CrossRefGoogle Scholar
  36. 36.
    Dirisamer M, Ham L, Dapena I, van Dijk K, Melles GRJ. Descemet membrane endothelial transfer: “free-floating” donor descemet implantation as a potential alternative to “keratoplasty”. Cornea. 2012;31(2):194–7.CrossRefGoogle Scholar
  37. 37.
    Okumura N, Ueno M, Koizumi N, Sakamoto Y, Hirata K, Hamuro J, et al. Enhancement on primate corneal endothelial cell survival in vitro by a ROCK inhibitor. Invest Ophthalmol Vis Sci. 2009;50(8):3680–7.CrossRefGoogle Scholar
  38. 38.
    Okumura N, Okazaki Y, Inoue R, Kakutani K, Nakano S, Kinoshita S, et al. Effect of the Rho-associated kinase inhibitor eye drop (Ripasudil) on corneal endothelial wound healing. Invest Ophthalmol Vis Sci. 2016;57(3):1284–92.CrossRefGoogle Scholar
  39. 39.
    Okumura N, Sakamoto Y, Fujii K, Kitano J, Nakano S, Tsujimoto Y, et al. Rho kinase inhibitor enables cell-based therapy for corneal endothelial dysfunction. Sci Rep. 2016;6(1):26113.CrossRefGoogle Scholar
  40. 40.
    Okumura N, Inoue R, Okazaki Y, Nakano S, Nakagawa H, Kinoshita S, et al. Effect of the Rho kinase inhibitor Y-27632 on corneal endothelial wound healing. Investig Opthalmology Vis Sci. 2015;56(10):6067.CrossRefGoogle Scholar
  41. 41.
    Moloney G, Petsoglou C, Ball M, Kerdraon Y, Höllhumer R, Spiteri N, et al. Descemetorhexis without grafting for fuchs endothelial dystrophy-supplementation with topical Ripasudil. Cornea. 2017;36(6):642–8.CrossRefGoogle Scholar
  42. 42.
    Koizumi N, Okumura N, Ueno M, Nakagawa H, Hamuro J, Kinoshita S. Rho-associated kinase inhibitor eye drop treatment as a possible medical treatment for Fuchs corneal dystrophy. Cornea. 2013;32(8):1167–70.CrossRefGoogle Scholar
  43. 43.
    Lam FC, Baydoun L, Dirisamer M, Lie J, Dapena I, Melles GRJ. Hemi-Descemet membrane endothelial keratoplasty transplantation: a potential method for increasing the pool of endothelial graft tissue. JAMA Ophthalmol. 2014;132(12):1469–73.CrossRefGoogle Scholar
  44. 44.
    Lam FC, Bruinsma M, Melles GRJ. Descemet membrane endothelial transfer. Curr Opin Ophthalmol. 2014;25(4):353–7.CrossRefGoogle Scholar
  45. 45.
    Katikireddy KR, Schmedt T, Price MO, Price FW, Jurkunas UV. Existence of neural crest-derived progenitor cells in Normal and Fuchs endothelial dystrophy corneal endothelium. Am J Pathol. 2016;186(10):2736–50.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Veronica Vargas
    • 1
  • Francisco Arnalich-Montiel
    • 2
  • Jorge L. Alió del Barrio
    • 3
  1. 1.Vissum Instituto Oftalmologico de AlicanteAlicanteSpain
  2. 2.Vissum CorporationMadridSpain
  3. 3.University Miguel HernandezVissum-Instituto Oftalmologico de AlicanteAlicanteSpain

Personalised recommendations