Advertisement

Cell-based Therapy Using Induced Plutipotent Stem Cell

  • Ricardo Pedro Casaroli-MaranoEmail author
Chapter
Part of the Essentials in Ophthalmology book series (ESSENTIALS)

Abstract

Advanced cell-based therapy has seen important advances over the last decade. An emerging alternative source of cells for the treatment of ocular disease is adult tissue progenitor cells. Despite certain limitations about complete terminal differentiation, they benefit from high proliferative potential, lower immunogenicity, and being easy to obtain by minimally invasive techniques. Induced pluripotent stem cells (IPSCs) are an additional alternative that have unlimited translational potential in organ and tissue regeneration. From the first investigations into cell reprogramming, which induced a full state of cellular pluripotency, to the most recent approaches for direct reprogramming through non-integrative methodology, advances in the understanding of events related to cellular proliferation and differentiation for clinical purposes has improved considerably. Several research groups are working on innovative methods and techniques to obtain different cellular types of ocular tissue, including epithelial and endothelial cells of the cornea, neurosensory retina, and pigmentary epithelium, using cell differentiation from IPSC lines or cells in partial states of induced pluripotency. However, the large-scale application of IPSC lines is not yet possible because drawbacks related to their clinical applicability need to be resolved, such as the tolerability and safety of receptor tissue and the need to develop refined clinical grade protocols for their production and differentiation. This chapter is intended to present some of the main innovations and future perspectives concerning the clinical applicability of IPSCs in ocular pathology, focusing on the ocular surface pathology.

Keywords

Regenerative medicine Cell reprogramming Differentiation Limbal stem cells Limbal stem cell deficiency Adult tissue stem cells Advanced therapy Cell-based therapy Corneal epithelial cells 

Notes

Acknowledgments

The author acknowledges support from Fundació Marató TV3 (120630-31) and Fondo de Investigaciones Sanitarias del Instituto de Salud Carlos III (FIS14-PI00196 and FIS18-PI00355), from the European Regional Development Fund (FEDER) of European Union.

Compliance with ethical requirements: Ricardo Pedro Casaroli-Marano declares that he has no conflict of interest. All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study. No animal studies were carried out by the authors for this article.

References

  1. 1.
    Osei-Bempong C, Figueiredo FC, Lako M. The limbal epithelium of the eye–a review of limbal stem cell biology, disease and treatment. BioEssays. 2013;35:211–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Casaroli-Marano RP, Nieto-Nicolau N, Martinez-Conesa EM. Progenitor cells for ocular surface regenerative therapy. Ophthalmic Res. 2013;49:115–21.PubMedCrossRefGoogle Scholar
  3. 3.
    Utheim TP. Limbal epithelial cell therapy: past, present, and future. Methods Mol Biol. 2013;1014:3–43.PubMedCrossRefGoogle Scholar
  4. 4.
    Pellegrini G, Rama P, Di Rocco A, Panaras A, De Luca M. Concise review: hurdles in a successful example of limbal stem cell-based regenerative medicine. Stem Cells. 2014;32:26–34.PubMedCrossRefGoogle Scholar
  5. 5.
    Rama P, Ferrari G, Pellegrini G. Cultivated limbal epithelial transplantation. Curr Opin Ophthalmol. 2017;28:387–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Fuest M, Yam GH-F, Peh GS-L, Mehta JS. Advances in corneal cell therapy. Regen Med. 2016;11:601–15.PubMedCrossRefGoogle Scholar
  7. 7.
    Kim K, Mian S. Diagnosis of corneal limbal stem cell deficiency. Curr Opin Ophthalmol. 2017;24:355–62.CrossRefGoogle Scholar
  8. 8.
    Casaroli-Marano R, Nieto-Nicolau N, Martínez-Conesa E, Edel M, Álvarez-Palomo AB. Potential role of induced pluripotent stem cells (IPSCs) for cell-based therapy of the ocular surface. J Clin Med. 2015;4:318–42.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Dua HS, Shanmuganathan VA, Powell-Richards AO, Tighe PJ, Joseph A. Limbal epithelial crypts: a novel anatomical structure and a putative limbal stem cell niche. Br J Ophthalmol. 2005;89:529–32.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Gonzalez G, Sasamoto Y, Ksander BR, Frank MH, Frank NY. Limbal stem cells: identity, developmental origin, and therapeutic potential. Wiley Interdiscip Rev Dev Biol. 2017.  https://doi.org/10.1002/wdev.303.CrossRefGoogle Scholar
  11. 11.
    Yeung AMH, Schlötzer-Schrehardt U, Kulkarni B, Tint NL, Hopkinson A, Dua HS. Limbal epithelial crypt: a model for corneal epithelial maintenance and novel limbal regional variations. Arch Ophthalmol. 2008;126:665–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Pellegrini G, Golisano O, Paterna P, Lambiase A, Bonini S, Rama P, et al. Location and clonal analysis of stem cells and their differentiated progeny in the human ocular surface. J Cell Biol. 1999;145:769–82.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Thoft RA, Friend J. The X, Y, Z hypothesis of corneal epithelial maintenance. Invest Ophthalmol Vis Sci. 1983;24:1442–3.PubMedGoogle Scholar
  14. 14.
    Dua HS, Miri A, Alomar T, Yeung AM, Said DG. The role of limbal stem cells in corneal epithelial maintenance. Testing the dogma. Ophthalmology. 2009;116:856–63.PubMedCrossRefGoogle Scholar
  15. 15.
    Yazdanpanah G, Jabbehdari S, Djalilian AR. Limbal and corneal epithelial homeostasis. Curr Opin Ophthalmol. 2017;28:348–54.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Majo F, Rochat A, Nicolas M, Jaoudé GA, Barrandon Y. Oligopotent stem cells are distributed throughout the mammalian ocular surface. Nature. 2008;456:250–4.PubMedCrossRefGoogle Scholar
  17. 17.
    Zhang Y, Sun H, Liu Y, Chen S, Cai S, Zhu Y, et al. The limbal epithelial progenitors in the limbal niche environment. Int J Med Sci. 2016;13:835–40.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Pellegrini G, Rama P, Matuska S, Lambiase A, Bonini S, Pocobelli A, et al. Biological parameters determining the clinical outcome of autologous cultures of limbal stem cells. Regen Med. 2013;8:553–67.CrossRefGoogle Scholar
  19. 19.
    Rama P, Matuska S, Paganoni G, Spinelli A, De Luca M, Pellegrini G. Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med. 2010;363:147–55.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Nieto-Nicolau N, Martínez-Conesa E, Casaroli-Marano R. Limbal stem cells from aged donors are a suitable source for clinical application. Stem Cells Int. 2016;2016:3032128.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Joe AW, Yeung SN. Concise review: identifying limbal stem cells: classical concepts and new challenges. Stem Cells Transl Med. 2014;3:318–22.PubMedCrossRefGoogle Scholar
  22. 22.
    Ljubimov AV, Saghizadeh M. Progress in corneal wound healing. Prog Retin Eye Res. 2015;49:17–45.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Huang M, Wang B, Wan P, Liang X, Wang X, Liu Y, et al. Roles of limbal microvascular net and limbal stroma in regulating maintenance of limbal epithelial stem cells. Cell Tissue Res. 2015;359:547–63.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Polisetti N, Zenkel M, Menzel-Severing J, Kruse FE, Schlötzer-Schrehardt U. Cell adhesion molecules and stem cell-niche-interactions in the limbal stem cell niche. Stem Cells. 2016;34:203–19.CrossRefGoogle Scholar
  25. 25.
    Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339:823–6.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Cabral T, DiCarlo JE, Justus S, Sengillo JD, Xu Y, Tsang SH. CRISPR applications in ophthalmologic genome surgery. Curr Opin Ophthalmol. 2017;28:252–9.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.CrossRefGoogle Scholar
  28. 28.
    Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–20.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Yamanaka S. Induced pluripotent stem cells: past, present, and future. Cell Stem Cell. 2012;10:678–84.PubMedCrossRefGoogle Scholar
  30. 30.
    Compagnucci C, Bertini E. The potential of iPSCs for the treatment of premature aging disorders. Int J Mol Sci. 2017;18.  https://doi.org/10.3390/ijms18112350.
  31. 31.
    Li L, Chao J, Shi Y. Modeling neurological diseases using iPSC-derived neural cells: iPSC modeling of neurological diseases. Cell Tissue Res. 2018;371:143–51.PubMedCrossRefGoogle Scholar
  32. 32.
    Grskovic M, Javaherian A, Strulovici B, Daley GQ. Induced pluripotent stem cells--opportunities for disease modelling and drug discovery. Nat Rev Drug Discov. 2011;10:915–29.PubMedGoogle Scholar
  33. 33.
    Diecke S, Diecke S, Diecke S, Jung SM, Lee J, Lee J, et al. Recent technological updates and clinical applications of induced pluripotent stem cells. Korean J Intern Med. 2014;29:547–57.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Chou BK, Mali P, Huang X, Ye Z, Dowey SN, Resar LMS, et al. Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Res. 2011;21:518–29.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;107:861–72.CrossRefGoogle Scholar
  36. 36.
    Pietronave S, Prat M. Advances and applications of induced pluripotent stem cells. Can J Physiol Pharmacol. 2012;90:317–25.PubMedCrossRefGoogle Scholar
  37. 37.
    Schlaeger T. Nonintegrating human somatic cell reprogramming methods. Adv Biochem Eng Biotechnol. 2018;163:1–21.Google Scholar
  38. 38.
    Parameswaran S, Balasubramanian S, Rao MS, Ahmad I. Concise review: non-cell autonomous reprogramming: a nucleic acid-free approach to induction of pluripotency. Stem Cells. 2011;29:1013–20.PubMedCrossRefGoogle Scholar
  39. 39.
    Kelaini S, Cochrane A, Margariti A. Direct reprogramming of adult cells: avoiding the pluripotent state. Stem Cells Cloning. 2014;7:19–29.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Blazejewska EA, Schlötzer-Schrehardt U, Zenkel M, Bachmann B, Chankiewitz E, Jacobi C, et al. Corneal limbal microenvironment can induce transdifferentiation of hair follicle stem cells into corneal epithelial-like cells. Stem Cells. 2009;27:642–52.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Meyer-Blazejewska EA, Call MK, Yamanaka O, Liu H, Schlötzer-Schrehardt U, Kruse FE, et al. From hair to cornea: toward the therapeutic use of hair follicle-derived stem cells in the treatment of limbal stem cell deficiency. Stem Cells. 2011;29:57–66.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Yang K, Jiang Z, Wang D, Lian X, Yang T. Corneal epithelial-like transdifferentiation of hair follicle stem cells is mediated by pax6 and β-catenin/Lef-1. Cell Biol Int. 2009;33:861–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Saichanma S, Bunyaratvej A, Sila-Asna M. In vitro transdifferentiation of corneal epithelial-like cells from human skin-derived precursor cells. Int J Ophthalmol. 2012;5:158–63.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Martínez-Conesa EM, Espel E, Reina M, Casaroli-Marano RP. Characterization of ocular surface epithelial and progenitor cell markers in human adipose stromal cells derived from lipoaspirates. Invest Ophthalmol Vis Sci. 2012;53:513–20.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Cieślar-Pobuda A, Rafat M, Knoflach V, Skonieczna M, Hudecki A, Małecki A, et al. Human induced pluripotent stem cell differentiation and direct transdifferentiation into corneal epithelial-like cells. Oncotarget. 2016;7:42314–29.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, et al. Autologous induced stem-cell–derived retinal cells for macular degeneration. N Engl J Med. 2017;376:1038–46.PubMedCrossRefGoogle Scholar
  47. 47.
    Takashima K, Inoue Y, Tashiro S, Muto K. Lessons for reviewing clinical trials using induced pluripotent stem cells: examining the case of a first-in-human trial for age-related macular degeneration. Regen Med. 2018;13:123–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Sugita S, Iwasaki Y, Makabe K, Kimura T, Futagami T, Suegami S, et al. Lack of T cell response to iPSC-derived retinal pigment epithelial cells from HLA homozygous donors. Stem Cell Rep. 2016;7:619–34.CrossRefGoogle Scholar
  49. 49.
    Sugita S, Iwasaki Y, Makabe K, Kamao H, Mandai M, Shiina T, et al. Successful transplantation of retinal pigment epithelial cells from MHC homozygote iPSCs in MHC-matched models. Stem Cell Rep. 2016;7:635–48.CrossRefGoogle Scholar
  50. 50.
    Morikawa S, Mabuchi Y, Niibe K, Suzuki S, Nagoshi N, Sunabori T, et al. Development of mesenchymal stem cells partially originate from the neural crest. Biochem Biophys Res Commun. 2009;379:1114–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Fuhrmann S. Wnt signaling in eye organogenesis. Organogenesis. 2008;4:60–7.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Mikhailova A, Ilmarinen T, Uusitalo H, Skottman H. Small-molecule induction promotes corneal epithelial cell differentiation from human induced pluripotent stem cells. Stem Cell Rep. 2014;2:219–31.CrossRefGoogle Scholar
  53. 53.
    Shalom-Feuerstein R, Serror L, De La Forest Divonne S, Petit I, Aberdam E, Camargo L, et al. Pluripotent stem cell model reveals essential roles for miR-450b-5p and miR-184 in embryonic corneal lineage specification. Stem Cells. 2012;30:898–909.PubMedCrossRefGoogle Scholar
  54. 54.
    Xu S. microRNA expression in the eyes and their significance in relation to functions. Prog Retin Eye Res. 2009;28:87–116.PubMedCrossRefGoogle Scholar
  55. 55.
    Rassi D, De Paiva C, Dias L, Modulo C, Adriano L, Fantucci M, et al. Review: microRNAs in ocular surface and dry eye diseases. Ocul Surf. 2017;14:660–9.CrossRefGoogle Scholar
  56. 56.
    Aberdam E, Petit I, Sangari L, Aberdam D. Induced pluripotent stem cell-derived limbal epithelial cells (LiPSC) as a cellular alternative for in vitro ocular toxicity testing. PLoS One. 2017;12:e0179913.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Gonzalez S, Chen L, Deng S. Comparative study of xenobiotic-free media for the cultivation of human limbal epithelial stem/progenitor cells. Tissue Eng Part C Methods. 2017;23:219–27.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies. Science. 2014;345:1247125.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Kuwahara A, Ozone C, Nakano T, Saito K, Eiraku M, Sasai Y. Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue. Nat Commun. 2015;6:6286.PubMedCrossRefGoogle Scholar
  60. 60.
    Völkner M, Zschätzsch M, Rostovskaya M, Overall RW, Busskamp V, Anastassiadis K, et al. Retinal organoids from pluripotent stem cells efficiently recapitulate retinogenesis. Stem Cell Rep. 2016;6:525–38.CrossRefGoogle Scholar
  61. 61.
    Foster JW, Wahlin K, Adams SM, Birk DE, Zack DJ, Chakravarti S. Cornea organoids from human induced pluripotent stem cells. Sci Rep. 2017;7:41286.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Hayashi R, Ishikawa Y, Sasamoto Y, Katori R, Nomura N, Ichikawa T, et al. Co-ordinated ocular development from human iPS cells and recovery of corneal function. Nature. 2016;531:376–80.PubMedCrossRefGoogle Scholar
  63. 63.
    Hayashi R, Ishikawa Y, Katori R, Sasamoto Y, Taniwaki Y, Takayanagi H, et al. Coordinated generation of multiple ocular-like cell lineages and fabrication of functional corneal epithelial cell sheets from human iPS cells. Nat Protoc. 2017;12:683–96.PubMedCrossRefGoogle Scholar
  64. 64.
    Susaimanickam PJ, Maddileti S, Pulimamidi VK, Boyinpally SR, Naik RR, Naik MN, et al. Generating minicorneal organoids from human induced pluripotent stem cells. Development. 2017;144:2338–51.PubMedCrossRefGoogle Scholar
  65. 65.
    Zhu Q, Lu Q, Gao R, Cao T. Prospect of human pluripotent stem cell-derived neural crest stem cells in clinical application. Stem Cells Int. 2016;2016:7695836.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Naylor RW, McGhee CNJ, Cowan CA, Davidson AJ, Holm TM, Sherwin T. Derivation of corneal keratocyte-like cells from human induced pluripotent stem cells. PLoS One. 2016;11:e0165464.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Fukuta M, Nakai Y, Kirino K, Nakagawa M, Sekiguchi K, Nagata S, et al. Derivation of mesenchymal stromal cells from pluripotent stem cells through a neural crest lineage using small molecule compounds with defined media. PLoS One. 2014;9:e112291.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Aharony I, Michowiz S, Goldenberg-Cohen N. The promise of stem cell-based therapeutics in ophthalmology. Neural Regen Res. 2017;12:173–80.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Zarbin M. Cell-based therapy for degenerative retinal disease. Trends Mol Med. 2016;22:115–34.PubMedCrossRefGoogle Scholar
  70. 70.
    Palomo ABA, Lucas M, Dilley RJ, McLenachan S, Chen FK, Requena J, et al. The power and the promise of cell reprogramming: personalized autologous body organ and cell transplantation. J Clin Med. 2014;3:373–87.PubMedCrossRefGoogle Scholar
  71. 71.
    Kao WWY, Coulson-Thomas VJ. Cell therapy of corneal diseases. Cornea. 2016;35:S9–19.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Erbani J, Aberdam D, Larghero J, Vanneaux V. Pluripotent stem cells and other innovative strategies for the treatment of ocular surface diseases. Stem Cell Rev. 2016;12:171–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Angunawela RI, Mehta JS, Daniels JT. Ex-vivo ocular surface stem cell therapies: current techniques, applications, hurdles and future directions. Expert Rev Mol Med. 2013;15:e4.PubMedCrossRefGoogle Scholar
  74. 74.
    Menzel-Severing J, Kruse FE, Schlötzer-Schrehardt U. Stem cell–based therapy for corneal epithelial reconstruction: present and future. Can J Ophthalmol. 2013;48:13–21.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Di Iorio E, Ferrari S, Fasolo A, Böhm E, Ponzin D, Barbaro V. Techniques for culture and assessment of limbal stem cell grafts. Ocul Surf. 2010;8:146–53.PubMedCrossRefGoogle Scholar
  76. 76.
    Morrison M, Bell J, George C, Harmon S, Munsie M, Kaye J. The European General Data Protection Regulation: challenges and considerations for iPSC researchers and biobanks. Regen Med. 2017;12:693–703.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–89.PubMedCrossRefGoogle Scholar
  78. 78.
    Zhang J, Li S, Li L, Li M, Guo C, Yao J, et al. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics. 2015;13:17–24.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Klingeborn M, Dismuke WM, Bowes Rickman C, Stamer WD. Roles of exosomes in the normal and diseased eye. Prog Retin Eye Res. 2017;59:158–77.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Yu B, Zhang X, Li X. Exosomes derived from mesenchymal stem cells. Int J Mol Sci. 2014;15:4142–57.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Surgery, School of Medicine and Hospital Clínic de BarcelonaUniversity of BarcelonaBarcelonaSpain
  2. 2.Institute of Biomedical Research (IIB-Sant Pau) and Barcelona Tissue BankBanc de Sang i TeixitsBarcelonaSpain

Personalised recommendations