Advertisement

Corneal Stem Cell-Based Therapies

  • Yuzuru Sasamoto
  • Yoshinori Oie
  • Kohji NishidaEmail author
Chapter
Part of the Essentials in Ophthalmology book series (ESSENTIALS)

Abstract

Stem cell-based therapies for corneal diseases have been developing since the concept of limbal stem cells (LSCs) was established in 1986. LSCs reside in the limbal area, which is the conjunctional zone of cornea and conjunctiva. Loss of LSCs leads to limbal stem cell deficiency (LSCD), and corneal epithelial regeneration is severely impaired. One of the ways to overcome the LSCD is transplantation of LSCs or their substitute containing tissue. Here, we describe the details of six presently major cell-based therapies of LSCD, that is, conjunctival limbal autograft (CLAU), keratolimbal allograft (KLAL), living-related conjunctival limbal allograft (Lr-CLAL), cultivated limbal epithelial transplantation (CLET), simple limbal epithelial transplantation (SLET), and cultivated oral mucosal epithelial transplantation (COMET). As each method has its pros and cons, researchers are seeking other sources of stem cells especially for the treatment of bilateral LSCD. The cell sources currently being investigated can be categorized into four groups, (i) corneal epithelial cells induced from pluripotent stem cells, (ii) corneal epithelial cells induced from the other differentiated cell source (direct reprogramming), (iii) corneal epithelial alternatives from the other surface ectoderm-derived cells, and (iv) purified LSCs. Of these candidate cell sources, pluripotent stem cells such as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and mesenchymal stem cells (MSCs) are increasingly being used for the induction of not only corneal epithelial cells but also keratocytes and corneal endothelial cells.

Keywords

Limbal stem cell Limbal stem cell deficiency Stem cell-based therapy Conjunctival limbal autograft (CLAU) Keratolimbal allograft (KLAL) Living-related conjunctival limbal allograft (Lr-CLAL) Cultivated limbal epithelial transplantation (CLET) Simple limbal epithelial transplantation (SLET) and cultivated oral mucosal epithelial Transplantation (COMET) Pluripotent stem cells 

Notes

Compliance with Ethical Requirements

Yuzuru Sasamoto and Yoshinori Oie declare no conflict of interest. Prof. Kohji Nishida received a Grant for Translational Research Network Program supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan. All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study. All institutional and national guidelines for the care and use of laboratory animals were followed.

References

  1. 1.
    Schermer A, Galvin S, Sun TT. Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol. 1986;103(1):49–62.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Thoft RA, Friend J. The X, Y, Z hypothesis of corneal epithelial maintenance. Invest Ophthalmol Vis Sci. 1983;24(10):1442–3.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Yoon JJ, Ismail S, Sherwin T. Limbal stem cells: central concepts of corneal epithelial homeostasis. World J Stem Cells. 2014;6(4):391–403.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Chen JJ, Tseng SC. Corneal epithelial wound healing in partial limbal deficiency. Invest Ophthalmol Vis Sci. 1990;31(7):1301–14.PubMedGoogle Scholar
  5. 5.
    Tseng SC. Concept and application of limbal stem cells. Eye (Lond). 1989;3(Pt 2):141–57.CrossRefGoogle Scholar
  6. 6.
    Kwok LS, Coroneo MT. A model for pterygium formation. Cornea. 1994;13(3):219–24.PubMedCrossRefGoogle Scholar
  7. 7.
    Thoft RA. Conjunctival transplantation. Arch Ophthalmol. 1977;95(8):1425–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Kenyon KR, Tseng SC. Limbal autograft transplantation for ocular surface disorders. Ophthalmology. 1989;96(5):709–22; discussion 22–3.PubMedCrossRefGoogle Scholar
  9. 9.
    Koch JM, Mellin KB, Waubke TN. The pterygium, autologous conjunctiva-limbus transplantation as treatment. Ophthalmologe. 1992;89(2):143–6.PubMedGoogle Scholar
  10. 10.
    Prabhasawat P, Barton K, Burkett G, Tseng SC. Comparison of conjunctival autografts, amniotic membrane grafts, and primary closure for pterygium excision. Ophthalmology. 1997;104(6):974–85.PubMedCrossRefGoogle Scholar
  11. 11.
    Kheirkhah A, Hashemi H, Adelpour M, Nikdel M, Rajabi MB, Behrouz MJ. Randomized trial of pterygium surgery with mitomycin C application using conjunctival autograft versus conjunctival-limbal autograft. Ophthalmology. 2012;119(2):227–32.PubMedCrossRefGoogle Scholar
  12. 12.
    Chui J, Coroneo MT, Tat LT, Crouch R, Wakefield D, Di Girolamo N. Ophthalmic pterygium: a stem cell disorder with premalignant features. Am J Pathol. 2011;178(2):817–27.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Copeland RA Jr, Char DH. Limbal autograft reconstruction after conjunctival squamous cell carcinoma. Am J Ophthalmol. 1990;110(4):412–5.PubMedCrossRefGoogle Scholar
  14. 14.
    Siganos CS, Kozobolis VP, Christodoulakis EV. The intraoperative use of mitomycin-C in excision of ocular surface neoplasia with or without limbal autograft transplantation. Cornea. 2002;21(1):12–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Meallet MA, Espana EM, Grueterich M, Ti SE, Goto E, Tseng SC. Amniotic membrane transplantation with conjunctival limbal autograft for total limbal stem cell deficiency. Ophthalmology. 2003;110(8):1585–92.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Dua HS, Azuara-Blanco A. Autologous limbal transplantation in patients with unilateral corneal stem cell deficiency. Br J Ophthalmol. 2000;84(3):273–8.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Kheirkhah A, Raju VK, Tseng SC. Minimal conjunctival limbal autograft for total limbal stem cell deficiency. Cornea. 2008;27(6):730–3.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Baradaran-Rafii A, Akbari M, Shirzadeh E, Shams M. Single block conjunctival limbal autograft for unilateral total limbal stem cell deficiency. J Ophthalmic Vis Res. 2015;10(1):90–2.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Marinho D, Hofling-Lima AL, Kwitko S, Tseng SC. Does amniotic membrane transplantation improve the outcome of autologous limbal transplantation? Cornea. 2003;22(4):338–42.PubMedCrossRefGoogle Scholar
  20. 20.
    Kenyon KR, Wagoner MD, Hettinger ME. Conjunctival autograft transplantation for advanced and recurrent pterygium. Ophthalmology. 1985;92(11):1461–70.PubMedCrossRefGoogle Scholar
  21. 21.
    Al Fayez MF. Limbal-conjunctival vs conjunctival autograft transplant for recurrent pterygia: a prospective randomized controlled trial. JAMA Ophthalmol. 2013;131(1):11–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Ozdamar Y, Mutevelli S, Han U, Ileri D, Onal B, Ilhan O, et al. A comparative study of tissue glue and vicryl suture for closing limbal-conjunctival autografts and histologic evaluation after pterygium excision. Cornea. 2008;27(5):552–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Jiang J, Gong J, Li W, Hong C. Comparison of intra-operative 0.02% mitomycin C and sutureless limbal conjunctival autograft fixation in pterygium surgery: five-year follow-up. Acta Ophthalmol. 2015;93(7):e568–72.PubMedCrossRefGoogle Scholar
  24. 24.
    Welder JD, Pandya HK, Nassiri N, Djalilian AR. Conjunctival limbal autograft and allograft transplantation using fibrin glue. Ophthalmic Surg Lasers Imaging. 2012;43(4):323–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Fakhry MA. The use of mitomycin C with autologous limbal-conjunctival autograft transplantation for management of recurrent pterygium. Clin Ophthalmol. 2011;5:123–7.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Shimazaki J, Shinozaki N, Tsubota K. Transplantation of amniotic membrane and limbal autograft for patients with recurrent pterygium associated with symblepharon. Br J Ophthalmol. 1998;82(3):235–40.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Yao YF, Qiu WY, Zhang YM, Tseng SC. Mitomycin C, amniotic membrane transplantation and limbal conjunctival autograft for treating multirecurrent pterygia with symblepharon and motility restriction. Graefes Arch Clin Exp Ophthalmol. 2006;244(2):232–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Santos MS, Gomes JA, Hofling-Lima AL, Rizzo LV, Romano AC, Belfort R Jr. Survival analysis of conjunctival limbal grafts and amniotic membrane transplantation in eyes with total limbal stem cell deficiency. Am J Ophthalmol. 2005;140(2):223–30.PubMedCrossRefGoogle Scholar
  29. 29.
    Barreiro TP, Santos MS, Vieira AC, de Nadai Barros J, Hazarbassanov RM, Gomes JA. Comparative study of conjunctival limbal transplantation not associated with the use of amniotic membrane transplantation for treatment of total limbal deficiency secondary to chemical injury. Cornea. 2014;33(7):716–20.PubMedCrossRefGoogle Scholar
  30. 30.
    Masters JS, Harris DJ Jr. Low recurrence rate of pterygium after excision with conjunctival limbal autograft: a retrospective study with long-term follow-up. Cornea. 2015;34(12):1569–72.PubMedCrossRefGoogle Scholar
  31. 31.
    Young AL, Ho M, Jhanji V, Cheng LL. Ten-year results of a randomized controlled trial comparing 0.02% mitomycin C and limbal conjunctival autograft in pterygium surgery. Ophthalmology. 2013;120(12):2390–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Zheng K, Cai J, Jhanji V, Chen H. Comparison of pterygium recurrence rates after limbal conjunctival autograft transplantation and other techniques: meta-analysis. Cornea. 2012;31(12):1422–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Ontario HQ. Limbal stem cell transplantation: an evidence-based analysis. Ont Health Technol Assess Ser. 2008;8(7):1–58.Google Scholar
  34. 34.
    Fallah MR, Golabdar MR, Amozadeh J, Zare MA, Moghimi S, Fakhraee G. Transplantation of conjunctival limbal autograft and amniotic membrane vs mitomycin C and amniotic membrane in treatment of recurrent pterygium. Eye (Lond). 2008;22(3):420–4.CrossRefGoogle Scholar
  35. 35.
    Chen R, Huang G, Liu S, Ma W, Yin X, Zhou S. Limbal conjunctival versus amniotic membrane in the intraoperative application of mitomycin C for recurrent pterygium: a randomized controlled trial. Graefes Arch Clin Exp Ophthalmol. 2017;255(2):375–85.PubMedCrossRefGoogle Scholar
  36. 36.
    Tsai RJ, Tseng SC. Human allograft limbal transplantation for corneal surface reconstruction. Cornea. 1994;13(5):389–400.PubMedCrossRefGoogle Scholar
  37. 37.
    Holland EJ, Djalilian AR, Schwartz GS. Management of aniridic keratopathy with keratolimbal allograft: a limbal stem cell transplantation technique. Ophthalmology. 2003;110(1):125–30.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Sonmez B, Beden U. Fibrin glue-assisted sutureless limbal stem cell transplantation surgery for the treatment of severe ocular chemical injury. Cornea. 2011;30(3):296–300.PubMedCrossRefGoogle Scholar
  39. 39.
    Solomon A, Ellies P, Anderson DF, Touhami A, Grueterich M, Espana EM, et al. Long-term outcome of keratolimbal allograft with or without penetrating keratoplasty for total limbal stem cell deficiency. Ophthalmology. 2002;109(6):1159–66.PubMedCrossRefGoogle Scholar
  40. 40.
    Shanbhag SS, Saeed HN, Paschalis EI, Chodosh J. Keratolimbal allograft for limbal stem cell deficiency after severe corneal chemical injury: a systematic review. Br J Ophthalmol. 2018;102(8):1114–21.Google Scholar
  41. 41.
    Shimazaki J, Shimmura S, Tsubota K. Donor source affects the outcome of ocular surface reconstruction in chemical or thermal burns of the cornea. Ophthalmology. 2004;111(1):38–44.PubMedCrossRefGoogle Scholar
  42. 42.
    Kenyon KR, Rapoza PA. Limbal allograft transplantation for ocular surface disorders. Ophthalmology. 1995;102(suppl):101–2.Google Scholar
  43. 43.
    Tan DT, Ficker LA, Buckley RJ. Limbal transplantation. Ophthalmology. 1996;103(1):29–36.PubMedCrossRefGoogle Scholar
  44. 44.
    Daya SM, Ilari FA. Living related conjunctival limbal allograft for the treatment of stem cell deficiency. Ophthalmology. 2001;108(1):126–33; discussion 33–4.PubMedCrossRefGoogle Scholar
  45. 45.
    Gomes JA, Santos MS, Ventura AS, Donato WB, Cunha MC, Hofling-Lima AL. Amniotic membrane with living related corneal limbal/conjunctival allograft for ocular surface reconstruction in Stevens-Johnson syndrome. Arch Ophthalmol. 2003;121(10):1369–74.PubMedCrossRefGoogle Scholar
  46. 46.
    Titiyal JS, Sharma N, Agarwal AK, Prakash G, Tandon R, Vajpayee R. Live related versus cadaveric limbal allograft in limbal stem cell deficiency. Ocul Immunol Inflamm. 2015;23(3):232–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Biber JM, Skeens HM, Neff KD, Holland EJ. The Cincinnati procedure: technique and outcomes of combined living-related conjunctival limbal allografts and keratolimbal allografts in severe ocular surface failure. Cornea. 2011;30(7):765–71.PubMedCrossRefGoogle Scholar
  48. 48.
    Miri A, Said DG, Dua HS. Donor site complications in autolimbal and living-related allolimbal transplantation. Ophthalmology. 2011;118(7):1265–71.PubMedGoogle Scholar
  49. 49.
    Pellegrini G, Traverso CE, Franzi AT, Zingirian M, Cancedda R, De Luca M. Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet. 1997;349(9057):990–3.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Schwab IR, Reyes M, Isseroff RR. Successful transplantation of bioengineered tissue replacements in patients with ocular surface disease. Cornea. 2000;19(4):421–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Rama P, Matuska S, Paganoni G, Spinelli A, De Luca M, Pellegrini G. Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med. 2010;363(2):147–55.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Sangwan VS, Basu S, Vemuganti GK, Sejpal K, Subramaniam SV, Bandyopadhyay S, et al. Clinical outcomes of xeno-free autologous cultivated limbal epithelial transplantation: a 10-year study. Br J Ophthalmol. 2011;95(11):1525–9.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Basu S, Ali H, Sangwan VS. Clinical outcomes of repeat autologous cultivated limbal epithelial transplantation for ocular surface burns. Am J Ophthalmol. 2012;153(4):643–50, 50 e1–2.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Basu S, Mohamed A, Chaurasia S, Sejpal K, Vemuganti GK, Sangwan VS. Clinical outcomes of penetrating keratoplasty after autologous cultivated limbal epithelial transplantation for ocular surface burns. Am J Ophthalmol. 2011;152(6):917–24 e1.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Basu S, Fernandez MM, Das S, Gaddipati S, Vemuganti GK, Sangwan VS. Clinical outcomes of xeno-free allogeneic cultivated limbal epithelial transplantation for bilateral limbal stem cell deficiency. Br J Ophthalmol. 2012;96(12):1504–9.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Qi X, Xie L, Cheng J, Zhai H, Zhou Q. Characteristics of immune rejection after allogeneic cultivated limbal epithelial transplantation. Ophthalmology. 2013;120(5):931–6.PubMedCrossRefGoogle Scholar
  57. 57.
    Holland EJ. Management of limbal stem cell deficiency: a historical perspective, past, present, and future. Cornea. 2015;34(Suppl 10):S9–15.PubMedCrossRefGoogle Scholar
  58. 58.
    Haagdorens M, Van Acker SI, Van Gerwen V, Ni Dhubhghaill S, Koppen C, Tassignon MJ, et al. Limbal stem cell deficiency: current treatment options and emerging therapies. Stem Cells Int. 2016;2016:9798374.PubMedCrossRefGoogle Scholar
  59. 59.
    Zhao Y, Ma L. Systematic review and meta-analysis on transplantation of ex vivo cultivated limbal epithelial stem cell on amniotic membrane in limbal stem cell deficiency. Cornea. 2015;34(5):592–600.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Sangwan VS, Basu S, MacNeil S, Balasubramanian D. Simple limbal epithelial transplantation (SLET): a novel surgical technique for the treatment of unilateral limbal stem cell deficiency. Br J Ophthalmol. 2012;96(7):931–4.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Basu S, Sureka SP, Shanbhag SS, Kethiri AR, Singh V, Sangwan VS. Simple limbal epithelial transplantation: long-term clinical outcomes in 125 cases of unilateral chronic ocular surface burns. Ophthalmology. 2016;123(5):1000–10.CrossRefGoogle Scholar
  62. 62.
    Arora R, Dokania P, Manudhane A, Goyal JL. Preliminary results from the comparison of simple limbal epithelial transplantation with conjunctival limbal autologous transplantation in severe unilateral chronic ocular burns. Indian J Ophthalmol. 2017;65(1):35–40.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Nishida K, Yamato M, Hayashida Y, Watanabe K, Yamamoto K, Adachi E, et al. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med. 2004;351(12):1187–96.PubMedCrossRefGoogle Scholar
  64. 64.
    Satake Y, Higa K, Tsubota K, Shimazaki J. Long-term outcome of cultivated oral mucosal epithelial sheet transplantation in treatment of total limbal stem cell deficiency. Ophthalmology. 2011;118(8):1524–30.PubMedCrossRefGoogle Scholar
  65. 65.
    Oie Y, Hayashi R, Takagi R, Yamato M, Takayanagi H, Tano Y, et al. A novel method of culturing human oral mucosal epithelial cell sheet using post-mitotic human dermal fibroblast feeder cells and modified keratinocyte culture medium for ocular surface reconstruction. Br J Ophthalmol. 2010;94(9):1244–50.PubMedCrossRefGoogle Scholar
  66. 66.
    Oie Y, Nozaki T, Takayanagi H, Hara S, Hayashi R, Takeda S, et al. Development of a cell sheet transportation technique for regenerative medicine. Tissue Eng Part C Methods. 2014;20(5):373–82.PubMedCrossRefGoogle Scholar
  67. 67.
    Prabhasawat P, Ekpo P, Uiprasertkul M, Chotikavanich S, Tesavibul N, Pornpanich K, et al. Long-term result of autologous cultivated oral mucosal epithelial transplantation for severe ocular surface disease. Cell Tissue Bank. 2016;17(3):491–503.PubMedCrossRefGoogle Scholar
  68. 68.
    Jenkins C, Tuft S, Liu C, Buckley R. Limbal transplantation in the management of chronic contact-lens-associated epitheliopathy. Eye (Lond). 1993;7 .(Pt 5:629–33.CrossRefGoogle Scholar
  69. 69.
    Busin M, Breda C, Bertolin M, Bovone C, Ponzin D, Ferrari S, et al. Corneal epithelial stem cells repopulate the donor area within 1 year from limbus removal for limbal autograft. Ophthalmology. 2016;123(12):2481–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Satake Y, Dogru M, Yamaguchi T, Tomida D, Hirayama M, Shimazaki J. Immunological rejection following allogeneic cultivated limbal epithelial transplantation. JAMA Ophthalmol. 2013;131(7):920–2.PubMedCrossRefGoogle Scholar
  71. 71.
    Tsubota K. Ocular surface management in corneal transplantation, a review. Jpn J Ophthalmol. 1999;43(6):502–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Krakauer M, Welder JD, Pandya HK, Nassiri N, Djalilian AR. Adverse effects of systemic immunosuppression in keratolimbal allograft. J Ophthalmol. 2012;2012:576712.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Sepsakos L, Cheung AY, Nerad JA, Mogilishetty G, Holland EJ. Donor-derived conjunctival-limbal melanoma after a keratolimbal allograft. Cornea. 2017;36(11):1415–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Miller AK, Young JW, Wilson DJ, Dunlap J, Chamberlain W. Transmission of donor-derived breast carcinoma as a recurrent mass in a keratolimbal allograft. Cornea. 2017;36(6):736–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Cheung AY, Govil A, Friedstrom SR, Holland EJ. Probable donor-derived cytomegalovirus disease after keratolimbal allograft transplantation. Cornea. 2017;36(8):1006–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Nakamura T, Inatomi T, Sotozono C, Amemiya T, Kanamura N, Kinoshita S. Transplantation of cultivated autologous oral mucosal epithelial cells in patients with severe ocular surface disorders. Br J Ophthal. 2004;88(10):1280–4.CrossRefGoogle Scholar
  77. 77.
    Murphy FA. The public health risk of animal organ and tissue transplantation into humans. Science. 1996;273(5276):746–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Ahmad S, Stewart R, Yung S, Kolli S, Armstrong L, Stojkovic M, et al. Differentiation of human embryonic stem cells into corneal epithelial-like cells by in vitro replication of the corneal epithelial stem cell niche. Stem Cells. 2007;25(5):1145–55.PubMedCrossRefGoogle Scholar
  79. 79.
    Grinnemo KH, Sylven C, Hovatta O, Dellgren G, Corbascio M. Immunogenicity of human embryonic stem cells. Cell Tissue Res. 2008;331(1):67–78.PubMedCrossRefGoogle Scholar
  80. 80.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Hayashi R, Ishikawa Y, Katori R, Sasamoto Y, Taniwaki Y, Takayanagi H, et al. Coordinated generation of multiple ocular-like cell lineages and fabrication of functional corneal epithelial cell sheets from human iPS cells. Nat Protoc. 2017;12(4):683–96.PubMedCrossRefGoogle Scholar
  82. 82.
    Hayashi R, Ishikawa Y, Sasamoto Y, Katori R, Nomura N, Ichikawa T, et al. Co-ordinated ocular development from human iPS cells and recovery of corneal function. Nature. 2016;531(7594):376–80.PubMedCrossRefGoogle Scholar
  83. 83.
    Taylor CJ, Peacock S, Chaudhry AN, Bradley JA, Bolton EM. Generating an iPSC bank for HLA-matched tissue transplantation based on known donor and recipient HLA types. Cell Stem Cell. 2012;11(2):147–52.PubMedCrossRefGoogle Scholar
  84. 84.
    Miura K, Okada Y, Aoi T, Okada A, Takahashi K, Okita K, et al. Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol. 2009;27(8):743–5.PubMedCrossRefGoogle Scholar
  85. 85.
    Zhao T, Zhang ZN, Rong Z, Xu Y. Immunogenicity of induced pluripotent stem cells. Nature. 2011;474(7350):212–5.PubMedCrossRefGoogle Scholar
  86. 86.
    Zhang J, Huang X, Wang H, Liu X, Zhang T, Wang Y, et al. The challenges and promises of allogeneic mesenchymal stem cells for use as a cell-based therapy. Stem Cell Res Ther. 2015;6(1):234.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Bellagamba BC, Abreu BR, Grivicich I, Markarian CF, Chem E, Camassola M, et al. Human mesenchymal stem cells are resistant to cytotoxic and genotoxic effects of cisplatin in vitro. Genet Mol Biol. 2016;39(1):129–34.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Gu S, Xing C, Han J, Tso MO, Hong J. Differentiation of rabbit bone marrow mesenchymal stem cells into corneal epithelial cells in vivo and ex vivo. Mol Vis. 2009;15:99–107.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Jiang TS, Cai L, Ji WY, Hui YN, Wang YS, Hu D, et al. Reconstruction of the corneal epithelium with induced marrow mesenchymal stem cells in rats. Mol Vis. 2010;16:1304–16.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Rohaina CM, Then KY, Ng AM, Wan Abdul Halim WH, Zahidin AZ, Saim A, et al. Reconstruction of limbal stem cell deficient corneal surface with induced human bone marrow mesenchymal stem cells on amniotic membrane. Transl Res. 2014;163(3):200–10.PubMedCrossRefGoogle Scholar
  91. 91.
    Reinshagen H, Auw-Haedrich C, Sorg RV, Boehringer D, Eberwein P, Schwartzkopff J, et al. Corneal surface reconstruction using adult mesenchymal stem cells in experimental limbal stem cell deficiency in rabbits. Acta Ophthalmol. 2011;89(8):741–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Gomes JA, Geraldes Monteiro B, Melo GB, Smith RL, Cavenaghi Pereira da Silva M, Lizier NF, et al. Corneal reconstruction with tissue-engineered cell sheets composed of human immature dental pulp stem cells. Invest Ophthalmol Vis Sci. 2010;51(3):1408–14.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Barkholt L, Flory E, Jekerle V, Lucas-Samuel S, Ahnert P, Bisset L, et al. Risk of tumorigenicity in mesenchymal stromal cell-based therapies–bridging scientific observations and regulatory viewpoints. Cytotherapy. 2013;15(7):753–9.PubMedCrossRefGoogle Scholar
  94. 94.
    Kelaini S, Cochrane A, Margariti A. Direct reprogramming of adult cells: avoiding the pluripotent state. Stem Cells Cloning. 2014;7:19–29.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Ouyang H, Xue Y, Lin Y, Zhang X, Xi L, Patel S, et al. WNT7A and PAX6 define corneal epithelium homeostasis and pathogenesis. Nature. 2014;511(7509):358–61.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Kitazawa K, Hikichi T, Nakamura T, Mitsunaga K, Tanaka A, Nakamura M, et al. OVOL2 maintains the transcriptional program of human corneal epithelium by suppressing epithelial-to-mesenchymal transition. Cell Rep. 2016;15(6):1359–68.PubMedCrossRefGoogle Scholar
  97. 97.
    Sasamoto Y, Hayashi R, Park SJ, Saito-Adachi M, Suzuki Y, Kawasaki S, et al. PAX6 isoforms, along with reprogramming factors, differentially regulate the induction of cornea-specific genes. Sci Rep. 2016;6:20807.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Bayart E, Cohen-Haguenauer O. Technological overview of iPS induction from human adult somatic cells. Curr Gene Ther. 2013;13(2):73–92.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Blazejewska EA, Schlotzer-Schrehardt U, Zenkel M, Bachmann B, Chankiewitz E, Jacobi C, et al. Corneal limbal microenvironment can induce transdifferentiation of hair follicle stem cells into corneal epithelial-like cells. Stem Cells. 2009;27(3):642–52.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Katikireddy KR, Dana R, Jurkunas UV. Differentiation potential of limbal fibroblasts and bone marrow mesenchymal stem cells to corneal epithelial cells. Stem Cells. 2014;32(3):717–29.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Ricardo JR, Cristovam PC, Filho PA, Farias CC, de Araujo AL, Loureiro RR, et al. Transplantation of conjunctival epithelial cells cultivated ex vivo in patients with total limbal stem cell deficiency. Cornea. 2013;32(3):221–8.PubMedCrossRefGoogle Scholar
  102. 102.
    Kobayashi M, Nakamura T, Yasuda M, Hata Y, Okura S, Iwamoto M, et al. Ocular surface reconstruction with a tissue-engineered nasal mucosal epithelial cell sheet for the treatment of severe ocular surface diseases. Stem Cells Transl Med. 2015;4(1):99–109.PubMedCrossRefGoogle Scholar
  103. 103.
    Ksander BR, Kolovou PE, Wilson BJ, Saab KR, Guo Q, Ma J, et al. ABCB5 is a limbal stem cell gene required for corneal development and repair. Nature. 2014;511(7509):353–7.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Schatton T, Yang J, Kleffel S, Uehara M, Barthel SR, Schlapbach C, et al. ABCB5 identifies immunoregulatory dermal cells. Cell Rep. 2015;12(10):1564–74.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Frank MH, Frank NY. Restoring the cornea from limbal stem cells. Regen Med. 2015;10(1):1–4.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Tan DT, Dart JK, Holland EJ, Kinoshita S. Corneal transplantation. Lancet. 2012;379(9827):1749–61.PubMedCrossRefGoogle Scholar
  107. 107.
    Pinnamaneni N, Funderburgh JL. Concise review: stem cells in the corneal stroma. Stem Cells. 2012;30(6):1059–63.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Du Y, Carlson EC, Funderburgh ML, Birk DE, Pearlman E, Guo N, et al. Stem cell therapy restores transparency to defective murine corneas. Stem Cells. 2009;27(7):1635–42.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Zhu Q, Li M, Yan C, Lu Q, Wei S, Gao R, et al. Directed differentiation of human embryonic stem cells to neural crest stem cells, functional peripheral neurons, and corneal Keratocytes. Biotechnol J. 2017;12(12). https://doi.org/10.1002/biot.201700067. Epub 2017 Aug 22.CrossRefGoogle Scholar
  110. 110.
    Hertsenberg AJ, Funderburgh JL. Generation of corneal keratocytes from human embryonic stem cells. Methods Mol Biol. 2016;1341:285–94.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Naylor RW, McGhee CN, Cowan CA, Davidson AJ, Holm TM, Sherwin T. Derivation of corneal keratocyte-like cells from human induced pluripotent stem cells. PLoS One. 2016;11(10):e0165464.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Park SH, Kim KW, Chun YS, Kim JC. Human mesenchymal stem cells differentiate into keratocyte-like cells in keratocyte-conditioned medium. Exp Eye Res. 2012;101:16–26.PubMedCrossRefGoogle Scholar
  113. 113.
    Syed-Picard FN, Du Y, Lathrop KL, Mann MM, Funderburgh ML, Funderburgh JL. Dental pulp stem cells: a new cellular resource for corneal stromal regeneration. Stem Cells Transl Med. 2015;4(3):276–85.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Liu H, Zhang J, Liu CY, Wang IJ, Sieber M, Chang J, et al. Cell therapy of congenital corneal diseases with umbilical mesenchymal stem cells: lumican null mice. PLoS One. 2010;5(5):e10707.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Demirayak B, Yuksel N, Celik OS, Subasi C, Duruksu G, Unal ZS, et al. Effect of bone marrow and adipose tissue-derived mesenchymal stem cells on the natural course of corneal scarring after penetrating injury. Exp Eye Res. 2016;151:227–35.PubMedCrossRefGoogle Scholar
  116. 116.
    Shimazaki J, Amano S, Uno T, Maeda N, Yokoi N, Japan Bullous Keratopathy Study G. National survey on bullous keratopathy in Japan. Cornea. 2007;26(3):274–8.PubMedCrossRefGoogle Scholar
  117. 117.
    Gorovoy MS. Descemet-stripping automated endothelial keratoplasty. Cornea. 2006;25(8):886–9.PubMedCrossRefGoogle Scholar
  118. 118.
    Price MO, Giebel AW, Fairchild KM, Price FW Jr. Descemet’s membrane endothelial keratoplasty: prospective multicenter study of visual and refractive outcomes and endothelial survival. Ophthalmology. 2009;116(12):2361–8.PubMedCrossRefGoogle Scholar
  119. 119.
    Price MO, Gorovoy M, Benetz BA, Price FW Jr, Menegay HJ, Debanne SM, et al. Descemet’s stripping automated endothelial keratoplasty outcomes compared with penetrating keratoplasty from the Cornea Donor Study. Ophthalmology. 2010;117(3):438–44.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Okumura N, Ueno M, Koizumi N, Sakamoto Y, Hirata K, Hamuro J, et al. Enhancement on primate corneal endothelial cell survival in vitro by a ROCK inhibitor. Invest Ophthalmol Vis Sci. 2009;50(8):3680–7.CrossRefGoogle Scholar
  121. 121.
    Okumura N, Kinoshita S, Koizumi N. Application of rho kinase inhibitors for the treatment of corneal endothelial diseases. J Ophthalmol. 2017;2017:2646904.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Hara S, Hayashi R, Soma T, Kageyama T, Duncan T, Tsujikawa M, et al. Identification and potential application of human corneal endothelial progenitor cells. Stem Cells Dev. 2014;23(18):2190–201.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    He Z, Campolmi N, Gain P, Ha Thi BM, Dumollard JM, Duband S, et al. Revisited microanatomy of the corneal endothelial periphery: new evidence for continuous centripetal migration of endothelial cells in humans. Stem Cells. 2012;30(11):2523–34.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Katikireddy KR, Schmedt T, Price MO, Price FW, Jurkunas UV. Existence of neural crest-derived progenitor cells in normal and fuchs endothelial dystrophy corneal endothelium. Am J Pathol. 2016;186(10):2736–50.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Zhao JJ, Afshari NA. Generation of human corneal endothelial cells via in vitro ocular lineage restriction of pluripotent stem cells. Invest Ophthalmol Vis Sci. 2016;57(15):6878–84.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    McCabe KL, Kunzevitzky NJ, Chiswell BP, Xia X, Goldberg JL, Lanza R. Efficient generation of human embryonic stem cell-derived corneal endothelial cells by directed differentiation. PLoS One. 2015;10(12):e0145266.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Zhang K, Pang K, Wu X. Isolation and transplantation of corneal endothelial cell-like cells derived from in-vitro-differentiated human embryonic stem cells. Stem Cells Dev. 2014;23(12):1340–54.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Chen P, Chen JZ, Shao CY, Li CY, Zhang YD, Lu WJ, et al. Treatment with retinoic acid and lens epithelial cell-conditioned medium in vitro directed the differentiation of pluripotent stem cells towards corneal endothelial cell-like cells. Exp Ther Med. 2015;9(2):351–60.PubMedCrossRefGoogle Scholar
  129. 129.
    Joyce NC, Harris DL, Markov V, Zhang Z, Saitta B. Potential of human umbilical cord blood mesenchymal stem cells to heal damaged corneal endothelium. Mol Vis. 2012;18:547–64.PubMedPubMedCentralGoogle Scholar
  130. 130.
    Dai Y, Guo Y, Wang C, Liu Q, Yang Y, Li S, et al. Non-genetic direct reprogramming and biomimetic platforms in a preliminary study for adipose-derived stem cells into corneal endothelia-like cells. PLoS One. 2014;9(10):e109856.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Hatou S, Yoshida S, Higa K, Miyashita H, Inagaki E, Okano H, et al. Functional corneal endothelium derived from corneal stroma stem cells of neural crest origin by retinoic acid and Wnt/beta-catenin signaling. Stem Cells Dev. 2013;22(5):828–39.PubMedCrossRefGoogle Scholar
  132. 132.
    Foster JW, Wahlin K, Adams SM, Birk DE, Zack DJ, Chakravarti S. Cornea organoids from human induced pluripotent stem cells. Sci Rep. 2017;7:41286.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Zhang C, Du L, Sun P, Shen L, Zhu J, Pang K, et al. Construction of tissue-engineered full-thickness cornea substitute using limbal epithelial cell-like and corneal endothelial cell-like cells derived from human embryonic stem cells. Biomaterials. 2017;124:180–94.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of Genetics, Department of MedicineBrigham and Women’s HospitalBostonUSA
  2. 2.Department of OphthalmologyOsaka University Graduate School of MedicineSuita, OsakaJapan

Personalised recommendations